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A​ ​Time​ ​Series​ ​Perspective​ ​of​ ​Ballet,​ ​“Shall​ ​We​ ​Dance?” 
 
I.​ ​Question: 

The scientific question motivating my work is: can we use any time series model to               

predict​ ​the​ ​appreciation​ ​of​ ​ballet​ ​performance​ ​over​ ​the​ ​next​ ​two​ ​years? 

II.​ ​Introduction: 

I am new to dance, and I am entranced by the show of ballet. I appreciate the complete                  

performance, especially the synchronicity of ballerinas with the flow of the music, but I wonder               

if such an attraction will continue to appeal to people over time. My impetus for this question                 

comes from the feeling that every time I attend a ballet, the people around me are considerably                 

older. I often feel that I do not belong there, because I do not see many people from my                   

generation. However, in the moment of the performance, I forget about my surroundings and              

immerse myself in it, and I imagine that the producers of the shows also find themselves doing                 

this. Over the last few years, I have noticed no change in the marketing strategies that they use.                  

This leaves no room for understanding the audience and making sure the productions attract new               

blood. When the closing act approaches, and I am brought back to real life. I feel afraid that one                   

day, this cultural attraction might die out. I would like to use my knowledge from time series                 

analysis to see if my worries are justified, that is, the culture is on a collision course with its own                    

end,​ ​or​ ​if​ ​I​ ​am​ ​only​ ​overthinking​ ​the​ ​problem. 

III.​ ​Data: 

People usually see a live performance when they have free time such as over the               

weekends, during the summer, or on winter breaks, so I decided to take a weekly dataset of                 
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people showing interest in ballet from Google Trends. Google Trend data is derived from search               

results and other relevant data. Google is nearly ubiquitously used for search and therefore its               

results might be a fair representation of interest. Since people from different regions might have               

different cultural standards for live performances, I chose to focus on the general interests of               

ballet performances in the United States. I used the keyword, “ballet”, in Google Trend to get                

three consecutive five-year spans of weekly comma-separated data files which in total consists             

726 values from January, 2004 to November, 2017. I evaluate the data in a bi-weekly fashion                

because, in most cases, the same ballet performance will not repeat for more than two weeks.                

The​ ​reduction​ ​in​ ​data​ ​also​ ​potentially​ ​removes​ ​some​ ​bias​ ​and​ ​noise. 

 

V.​ ​Method: 
I first plot the data directly to see what it looks like. From fig.1 above, I found my data is                    

obviously yearly seasonal, since there are 13 mountain-shaped ups and downs across the 13              

years in a continuous curve. I also notice that there is a slightly downward trend, which I                 

highlighted​ ​in​ ​red.  

(1).​ ​Linear​ ​Trend: 

 The trend is linear when fitting a linear model to our raw data, it gives a negative slope                  

with estimates of -2.1163 and an intercept at 4315. Meaning that every half month, the people’s                

interests in ballet performance are regressing a small amount. This can be explained by a               

possible interest shift towards other dance such as Korean pop dance and Zumba. If I type either                 
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of these keywords into Google Trend, both sets of data have a steady upward growing random                

walk tendency. The estimates of the parameters are significant given that their P-values are              

sufficiently less than 0.05, and the F-statistics corresponds with a P-value less than 0.5 also               

indicate the significance of a linear trend. However, by looking at R-squared, only 39% of the                

residuals can be explained. The long right tail of the residuals histogram suggest that we need to                 

find​ ​a​ ​better ​ ​model​ ​that​ ​can​ ​explain​ ​these​ ​results​ ​more​ ​in​ ​detail. 

(2).​ ​Seasonal​ ​ARIMA ​ ​Model: 

We know from earlier, the data has a linear trend. The KPSS test for stationarity, P-value                

is 0.01, indicates that we reject the null hypothesis that the data is stationary. However, the                

current data might also have been affected by extreme observations such as low interests in the                

middle and observations clustered between 220 to 240. To stabilize the data, we take a Box-Cox                

transformation​ ​with​ ​a​ ​-0.7700342​ ​lambda ​ ​value,​ ​and​ ​subsequently​ ​the​ ​graph​ ​looks​ ​like​ ​fig.2. 
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We apply the Dickey-Fuller test for stationarity, and it produces a 0.962 P-value, which              

suggests stationarity after taking the difference (see fig.3). Now, we see our data bouncing              

around​ ​a​ ​zero-mean. 

 
 To fit the above data into an ARIMA model, I evaluated the ACF(fig.4), PACF(fig.5) and               

EACF table. From the ACF, there is a temporary “cut off” at lags 26, 52, and, 78 with most                   

agreement of “tails off” after these lags, and PACF also indicates a “cut off” after lag 26, so it                   

might be just an AR model with seasonal period of 26. However, most of lags before lag 26 in                   

the PACF have significant correlations. Since our data starts in the winter season, these can be                

explained by the negative correlation of seasonal interests within a year right after Christmas.              

We can conclude some of the questions with introspection: Ask yourself a simple question, if               

you have visited a ballet performance, will you visit again within the same month? It is                

extremely unlikely for the general audience, and the normal spring ballet season starts two              

months​ ​later.  
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The huge periodic “spikes” are due to the existence of the Christmas season at the end of                 

the year, and I do not think I should treat these spikes as “outliers” to prewhiten the series                  

because​ ​these​ ​“spikes”​ ​are​ ​indeed​ ​a​ ​part​ ​of​ ​ballet​ ​culture. 

Fun fact: The Nutcracker ballet is annually performed around December, and this is             

where the “spikes” of our data came from. This makes sense because people have days off                

during the Christmas season. Additionally, this time coincides with frequent performances of the             

Nutcracker,​ ​a​ ​traditional​ ​Christmas​ ​ballet​ ​performance​ ​that​ ​attracts​ ​entire​ ​families.  

To continue the investigation, I analyzed the EACF below. It appears to indicate             

parameter combinations such as ARIMA(1,1,1)x(1,0,0)[26], ARIMA(2,1,2)x(1,0,0)[26], and       

several others. In order to compare AIC values and find the smallest one, I use the auto.arima                 

function in R which suggests an ARIMA(2,1,0)x(1,0,0)[26] model with AIC= -3102.26. Notice            

that all parameter estimates are significantly different from zero, so I think there is no overfitting.                

However, this model is tentative since it completely ignores the MA part which I cannot infer                

from​ ​the​ ​EACF​ ​table. 

 

 We need to diagnose the suggested model from auto.arima. Luckily, the Ljung-Box test             

has a P-value 0.3581, which indicates that we do not have significant autocorrelations. Checking              

normality from the histogram of residuals in fig.6, we see an almost bell-shaped curve, and the                

QQ-plot in fig.7 indicates a normal distribution with only 1 point outside of the 95% confidence                
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level. The Shapiro-Wilk test gives a P-value of 0.4149, hence normality is confirmed. The              

residuals of the seasonal ARIMA model is independent and normally distributed, so the             

ARIMA(2,1,0)x(1,0,0)[26]​ ​model​ ​fits​ ​the​ ​ballet​ ​data. 

​ ​  
Let us visualize the fitting of ARIMA(2,1,0)x(1,0,0)[26] Model from the year 2016 to             

2017 with 52 points, and see how well they can match up with the actual data over these years.                   

The blue curve in fig.8 is the fit from our model, the gray area is the confidence interval, and the                    

red curve is our raw data. Clearly, the model does a good job describing the real world since it                   

almost​ ​completely​ ​coincides​ ​with​ ​our​ ​actual​ ​data.  

(3).​ ​ARCH/GARCH​ ​Effect: 

At this point I am suspicious of a potential GARCH effect from the pattern of alternating                

quiet and volatile periods as seen in fig.3. The McLeod-Li test in fig.8 shows that most of the                  
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lags are above significance level, and only 5 of them are slightly below. I do not think this                  

supports a strong evidence for conditional heteroscedasticity, so here I decide to ignore them.              

However, This result might change when I use weekly data instead of bi-weekly, because              

GARCH​ ​effect​ ​generally​ ​applies​ ​to​ ​a​ ​larger​ ​data​ ​set. 

 

(4).​ ​Naïve​ ​Harmonic​ ​Model: 

Any time series data might have “hidden periodicities”. Since my ballet data is identified              

as​ ​a​ ​seasonal​ ​data​ ​with​ ​period​ ​26,​ ​we​ ​can​ ​also​ ​examine​ ​this​ ​in​ ​the​ ​Periodogram​ ​of​ ​my​ ​raw​ ​data. 

 

Here, we see two clear prominent peaks. One frequency is very close to zero, and can be                 

explained by our downward sloping trend that gives rise to about half of the points with their                 

own short periods, which further supports our ARIMA(2,1,0)x(1,0,0)[26] model with the pure            

AR part. The other frequency is closer to 0.03846, which captures about another half of our                
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observations with the biweekly period of 26. Besides these two dominant bars, there are a few                

smaller ones with frequencies spread out. This suggests a fit with two or three cosine-sine               

combinations for a harmonic model. Comparing R-squared values, two cosine-sine fit gives 0.41             

and three cosine-sine fit gives 0.42. Of course, the more combinations of cosine-sine pairs, the               

more we can capture in little detail. Since they do not largely differ, I decided to fit a two                   

cosine-sine combination. Below is a summary with the estimated parameters, notice that all are              

significant, except the second cosine estimate. It is interesting when comparing the R-squared             

with the linear model, there is a 2% improvement due to the naïve harmonic fit when explaining                 

the residuals, so the shape bests the trend in terms of fit? Checking with the QQ plot, most of                   

residuals are within the 95% confidence band, but there are some “irregularities” on the tails as                

behaviors​ ​may​ ​be​ ​affected​ ​by​ ​the​ ​downward​ ​linear ​ ​trend.  

The fitting is static and not changing over time, so it can only capture the general shape, seen in                   

fig.12. Of course, the Shapiro-Wilk test with P-value 0.001 rejects this naïve approach, which              

further​ ​suggests​ ​that​ ​we​ ​need​ ​to​ ​modify​ ​our​ ​model​ ​to​ ​capture​ ​the​ ​trend. 
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(5).​ ​Dynamic​ ​Harmonic​ ​Regression​ ​Model: 

To improve on the naïve Harmonic Model, I updated to a Dynamic Harmonic Regression              

model with ARIMA errors under the assumption of unchanging seasonality:          

, which contains both the     

regression part and the harmonic part with set to be an ARIMA process instead of white                 

noise. ​I do not think ​f​ixing the seasonality is a large disadvantage compared to our               

ARIMA(2,1,0)x(1,0,0)[26] model earlier since we do not have a very long time series. ​Using              

auto.arima again accommodating with pairs of Fourier terms in R. We have the following results               

with​ ​an​ ​ARIMA(1,1,1)(1,0,0)[26] ​ ​errors. 

https://www.codecogs.com/eqnedit.php?latex=%5Chspace%7B10pt%7DY_t%3D%5Cbeta_0%2B%5Csum_%7Bi%7D%5E%7Bn%7D%5Cbeta_ix_%7Bt%2Ci%7D%2B%5Csum_%7Bj%3D1%7D%5Em%5BA_icos(2%5Cpi%20f_jt)%2BB_isin(2%5Cpi%20f_j%20t)%5D%2Be_t%0
https://www.codecogs.com/eqnedit.php?latex=e_t%0
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The P-value of 0.2857 from Ljung-Box test suggests that the residuals are uncorrelated with the               

only exception appearing in the ACF at lag 26, and this might be due to the slightly downward                  

trend affecting the next year during the same season. The residuals look normal but with long                

tails,​ ​so​ ​let​ ​us​ ​keep​ ​this​ ​model​ ​for​ ​the​ ​moment,​ ​and​ ​judge​ ​it​ ​later ​ ​after​ ​forecasting! 

VI.​ ​Forecasting:

After comparing the model fittings, I think the ARIMA(2,1,0)x(1,0,0)[26] and Dynamic           

Harmonic Regression with ARIMA(1,1,1)(1,0,0)[26] errors can both serve for forecasting, see           

fig.13 and fig.14. Here, I use 361 bi-weekly training data for the past 13 years to predict next two                   

years​ ​(2018​ ​and​ ​2019). 

​ ​

Notice that the Dynamic Harmonic Regression model makes the predictions within a            

finer​ ​confidence ​ ​interval,​ ​and​ ​both​ ​models​ ​capture ​ ​the​ ​shape​ ​and​ ​the​ ​trend​ ​of​ ​our​ ​raw​ ​data. 
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VII.​ ​Conclusion:

To answer my question concerning the general audience appreciation of ballet 

performances over the next two years, I think Dynamic Harmonic Regression Model with 

ARIMA(1,1,1)x(1,0,0)[26] did a slightly better job than ARIMA(2,1,0)x(1,0,0)[26] model in 

terms of the confidence regions, and I am glad we kept it. Statistics! They both can offset the 

insufficiency of linear model and naïve harmonic model by adequately capturing the decreasing 

tendency while preserving the seasonal shape in great detail. Who knows, at some point, ballet 

culture may suddenly bloom again. The seasonal patterns throughout the year is obviously 

peaking at Christmas every year, and the forecasts from both models justified my concerns on 

the subject of the general appreciation of ballet. I can still take heart that I will definitely be able 

to​ ​find​ ​my​ ​generation ​ ​if​ ​I​ ​sit​ ​in​ ​Nutcracker ​ ​performance ​ ​this​ ​December.  

For further investigation of ballet performances, I can search for other sources than 

Google Trends, which collect data from more than just searches about the general term of ballet. 

Sub-categories such as "ballet shoes" and "ballet tutus" and "ballet performances" all fall under 

the hierarchical category of "ballet" and some of these sub-categories may not predict 

anything about interest. Additionally I would love to have retrieved the full 13 year dataset in 

one query with a common scale. Instead I modified the raw data to map the sum of the weekly 

means to a monthly dataset containing all 13 years on a common scale. If I have access to 

more specific data on real attendance at performances, I might be able to judge whether the 

trends are​ ​in​ ​fact​ ​due​ ​to​ ​interest​ ​in​ ​performances.  

Finally, thank you Professor Brillinger for your guidance during office hours and reading 

my​ ​paper​ ​this​ ​far!  




