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Abstract
My work focuses on implementing predictive coding and understanding free-energy

principle in the brain, and comparing it with some basic Bayesian Monte Carlo ap-
proach. Rao and Balllard first introduced predictive coding model with natural images
data to learn features resembling the receptive fields of neurones in the primary visual
cortex. The model aims to find the optimal estimates of parameters in the hierarchical
neuronal network; whereas free-energy principle proposed by Karl Friston are associ-
ated with learning the variance and covariance of the parameters. Although the set up
of the two models rely on the knowledge of bayesian prior, both apply gradient ascent
or decent method to approximate their estimates.

1 Introduction
Bayesian theory has been well developed in the past few decades to understand uncertainty,
and methods such as Monte Carlo(MC) simulations are widely used in many research areas
to draw conclusions about model parameters. In the field of neurone science, brains are
multi-layer structured and have rich dynamics. Applying bayesian inference in the primary
visual cortex can see how the sensory cortex get information from the noisy environment.

Scientists found from the experiment(see above figure) that when extend stimulus beyond
classical receptive field(A, figure), neurones at the centre are suppressed(B, figure) with a
decreasing spiking firing rate.
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2 Predictive Coding Model

2.1 Model definition
Rao and Ballard used natural images, where the neighbouring pixel intensities are correlated
in a level just like the neurones’ spiking activities, to capture this end-stopping effect, a
reduction of response behaviours(1999). They proposed a model of visual process(see below
figure, a): when given an input stimulus, starting from the bottom up, the higher order
visual cortical areas(i.e.V2) bring the predictions of the expected neural activities to the
lower order areas(i.e. V1) through feedback connections; then the residual errors that are
not predicted by V2 are calculated and pass through the feedforward connections in V1.

2.2 Method and Findings
Mathematically, this can be a hierarchical model trying to estimate the hidden causes pa-
rameter, r, in the network via synaptic learning, U(see above figure, b). For level 1:
I = f(Ur) + n, with f(Ur) = f(∑

j Ujrj). rj correspond to the activities such as the
firing rates of neurones or the internal representation of the spatial characteristics of the
image I in Rao and Ballard’s original paper(1999). Uj are the columns of U, representing
synaptic weights of neurones or basis vectors for generating images. f is the neuronal ac-
tivation function, which can be linear or nonlinear; typically, it is a sigmoidal function, i.e.
f(x) = tanh(x). n ∼ N(0, σ2) is the prediction errors that assume to be Gaussian. Similar
set up for the higher lever: r = rtd + ntd, with rtd = f(Uhrh). rtd is the top-down prediction
of r, and ntd ∼ N(0, σ2

td) is the corresponding prediction errors.

Many literature(Rao and Ballard, 1999; Bogacz, 2017) have taken the Gaussian prior on
p(rj) and p(Uij), and also for the gaussian likelihood. Instead of directly calculating the
posterior distribution, they take the negative logarithm of the posterior, and obtain the op-
timisation function, E = E1 + α

∑
i r

2
i + λ

∑
i,j U

2
ij, where α, λ ∈ R. After applying gradient

ascent or descent for the optimal estimates of r and U, the network then has dynamics,
dr
dt

= −k1
2

∂E
∂r and synaptic learning, dU

dt
= −k2

2
∂E
∂U , where k1, k2 ∈ R.

For illustration, consider a toy example that an animal wants to infer the size of a food
item. Apply bayesian MC simulations and comparing it with the gradient ascent method.

Example 2.2.1. Let I be the light intensity of a food item, say if the observed value is
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I = 2, and let r be the size of a food item that the animal wants to infer with prior knowl-
edge p(r) ∼ N(rp,Σ2

p), say the prior mean is rp = 3 and the prior variance is Σ2
p = 1. If the

size, r, is given, as the sensory input is noisy in general, one can treat the light intensity as
Gaussian with p(I|r) ∼ N(f(r),Σ2

I),. If we assume all the food have squared shape, then the
active function f(r) = r2 indicates that on average the light intensity is non-linear related
with the size. For simplicity, we can set Σ2

I = 1. From Baye’s theorem, the posterior dis-
tribution of the food size is p(r|I) = p(r)p(I|r)

p(I) , with p(I) =
∫
p(r)p(I|r))dr, the normalization

term. Below is the comparison from Bayesian MC direct sampling of posterior distribution
versus the gradient ascent approach to find optimal food size.

Note that both methods shared some similar results on the estimate of r. The bayesian
MC method showed that the most likely value for r is around 1.57, and the gradient ascent
method using Euler updates also converges to r = 1.57.

One remark is that base on the prior knowledge with expectation rp = 3, it is surprising
to see the posterior probability is low at r = 3, this is when r = 3, the expected likelihood,
E[p(I|r)] takes the active function, and become f(3) = 32 = 9, which is far different from
the observed value I = 2, so p(I = 2|r = 3) ≈ 0

3 Free Energy Principle

3.1 Background
Friston extended the predictive coding model by presenting the sensory uncertainty through
learning the variance and covariance of the features parameters via a simple plasticity
rule(Friston, 2005). Many of literatures agree with his idea that brain itself is or has an
internal model of the environment(Bogacz, 2015). Putting into bayesian framework, one can
think the deviation between this internal model and the reality of the external world is the
”Surprises”. Moreover, the brain does not like surprises, so it aims to minimise the surprise.
Then the goal is to obtain posterior distribution, p(v|I), where v is another hidden features.
If we use q(v) to approximate, from KL divergence:
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KL[q(v)‖p(v|I)] =
∫
q(v)log q(v)

p(v|I)dv

=
∫
q(v)log q(v)p(I)

p(v, I) dv

=
∫
q(v)log q(v)

p(v, I)dv +
∫
q(v)log[p(I)]dv

The first term of the last equation is the free-energy function, denote as F :=
∫
q(v)log q(v)

p(v,I)dv.
There are meanings behind this equation.One might consider the negative of the second term
in the last equation, −

∫
q(v)log[p(I)]dv = −log[p(I)] as ”Surprises”; then the free-energy

function can be expressed as F = KL[q(v)‖p(v|I)]+”Surprise”. Since KL divergence is al-
ways non-negative, then F is bounded below by the ”Surprises”. Minimising the ”Surprises”
is equivalent to minimise F . One can also define ”Energy” = −

∫
q(v)log[p(v,I)]dv and ”En-

tropy” = −
∫
q(v)log[q(v)]dv = limT→∞

1
T

∫ T
0 −log[q(v)]dt, so F = ”Energy”−”Entropy”.

Notice that ”Entropy” is essentially the long term average of ”Surprises”, to get a low ”En-
tropy” meaning to avoid ”Surprises”, and optimality minimise F .

3.2 Method and Results

Via free-energy principle, Friston introduced prediction errors as εp = v−vp

Σp
, to capture how

much the food size differs from prior expectation, and εI = I−f(v)
ΣI

, which describing how
much the light intensity differs from the expectation if the size of the food is v. Essentially,
this is just to standardise the parameters from predictive coding model.

The dynamics(see a diagram on the left) have ε̇p = v− vp − Σp · εp and ε̇I = I− f(v)−
ΣI · εI. The interpretation is that εp receives excitatory input(+) from v, inhibitory input(-)
from an active neuron via a connection strength vp, and inhibitory input from itself via a
connection strength Σp. Similar interpretation for ε̇I. Now applying the gradient ascent
method as mentioned before for the new parameters εI and εp, and comparing with the
original parameter, v.
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In general, the sensory cortical areas(V1) are hierarchically organised. if assuming the
expected neuronal activities in layer vi depend on the next layer, vi+1, so E[vi] = f(vi+1);
then p(vi|vi+1) ∼ N(f(vi+1),Σi), let I = v1. Prediction error on each level converges
to εi = vi−f(vi+1)

Σi
, where the variance is Σi = E[(vi − f(vi))2], and this is the Friston

paper interested about. If denote ei = vi − f(vi+1), dynamics of the model becomes:
ε̇i = vi − f(vi+1) − ei, ėi = Σiεi − ei, and ∆Σi = α(εie1 − 1) with α as a learning rate.
To check the convergence of Σi, see below plot with the change of Σi in 1000 simulations.

4 Conclusion and Discussion
This course project has broadened my horizons of viewing activities in the brain. Through the
study of ”bayesian brain hypothese”(Gershman, 2019), I understand how these mathematical
models can describe the sensory cortex to ”read” our world. However, one may recognise that
all the density function here is Gaussian; for the future direction, other reasonable density
function need to be discovered, and I am also interested to see other higher dimensional
network structure type such as the recurrent network model. Finally, thank you Professor
Liu for a wonderful semester and reading my paper this far!
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