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1 Introduction

We have seen a system with two time scales in Van der Pol equation with
relaxation oscillations when the control parameter is big, whereas the weakly
nonlinear oscillators exist for a small parameter value. The same phenomena
can be found in other places such as a robot manipulator powered by the
electric can have slower mechanical dynamics and faster electrical dynamics.
In neuronscience, many neuronal models contain a fast and a slow variables
but not always proceed to a periodic spiking activity, so no oscillations
exhibit. In this paper, I aim to show an example of such neuronal model,
and use the separation of time scales technique to analyze the firing responses
to the system.

2 Fast-slow analaysis

Consider the autonomous system of ODEs

du

dt
= F (u, x)

ε
dx

dt
= G(u, x)

(1)

where u is the slow variable, and the x is the fast variable. One can per-
form separation of timescales to understand fixed points and their stabilities.
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2.1 fast variable equation:

On the fast timescale, treat u = u0 as a fixed constant since it becomes
infinitely slow on this timescale, so x(t) approximately obeys

ε
dx

dt
= G(u0, x) (2)

On this timescale, the equation is accurate on time intervals [t0, t0 + δ]
for δ sufficiently small. Assume that there is a unique stable fixed point,
x0 = H(u0), where H(u0) provides some expression with respect to u, for
each value of u0 in Eq.(1). Specifically, assume

G(u0, H(u0)) = 0

From stability, we need the Jacobian of Eq.(1) at x0 = H(u0) has eigenvalues
with negative real part. Also if assuming that this fixed point is globally
attracting, the point x = H(u) is called the quasi-steady state for x at u
because it is the steady-state solution on the fast timescale, but not on the
slow timescale since u changes on the slow timescale.

2.2 slow variable equation:

To solve this system, we first let ε→ 0, then the second equation approaches
its fixed point quickly. So, on the slow timescale, we have

du

dt
= F (u(t), x(t)) (3)

and
x(t) = H(u(t))

Specifically, these equations become accurate after a short transient while
we wait for x(t) to approach its quasi-steady state on the fast timescale.

Note that x(t) is a dynamical system (i.e., its evolution in time only
depends on its current value, i.e., x(t + dt) only depends on x(t) for any
dt). Therefore it also satisfies an ODE, at least locally. This ODE can be
written as

dx

dt
=
dx

du

du

dt
=
dH(u)

du
F (u,H(u))

According to Wikipedia provided by a theorem from Tikhonov: as ε→ 0, if
we are given correct conditions to the system, the solution follows:

u̇ = F (u, x)

G(u, x) = 0

u(0) = u0
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3 A recurrent neuronal model on Balanced Net-
work

Now if we want to mimic the spiking behaviours of neurons in the cortical re-
gion that stimulated by other regions, we can consider a recurrent neuronal
network of size N with constant feedforward input X. The network contains
two sub-populations, one for excitatory and the other is inhibitory, where
a = e, i and b = e, i, x. Biologically, neurons communicate with each other
through synapse. Hence we can model a neuron j in postsynaptic population
a with connectivity strength Jab

jk from its neighbouring neourn k from presy-
naptic population b. Notice that k can come from three sources, namely
b = e, i and x. The connectivity matrix J follows a blockwise Erdos-Renyi
network

Jab
jk =

1√
N

{
jab. with prob. pab

0

Experiment has shown that ”neurons fire together wire together”(Bi
&Pool, 1998), meaning that the synapse connection is not static, it changes
along with the fast changing firing activities within a region, and it tries
to adapt/learn the new environment. We call this synaptic plasticity, and
biologically, the changes are very slow.

If we are interested in how the slow changing synapses from inhibitory
sub-population to other sub-populations involved with the rapid changing
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firing rate, we can apply the separation of time-scale analysis as before:

dW ai

dt
= F (r,W ) = −ηa(ra − ρa)(ri)T �W ai

ε
dra

dt
= G(r,W ) = −ra + f(I)

where 0 < ε� 1, ηa is the learning rate/timesclae for the synaptic weights
to adapt an environment of the network, r = [re, ri]T , and I is the input
synaptic current such that I = Wr+X. f is a non-decreasing function such
as f = 0 if I < 0 and increases might or might not reach to a threshold like
a sigmoid function or a hyperbolic tanh for I > 0. Notice that f captures
the relationship between input current and firing rates, and it depends on
the different type of the states(i.e. balanced or semi-balanced). The analysis
is performed in the ε → 0 limit. Empirically, we know that this will work
because rates get close to their fixed point within around 100ms, but weights
take more like 10s to reach their fixed point. Individual elements of r are
O(1), whereas the individual elements of J scale like O(1/

√
N), here we

see a drastic time scale difference in the system. In the end, we reach the
conclusion that, at the slow timescale, weights evolve according to

dW

dt
= F (r0(W ),W )

where r0(W ) is a function of W that satisfies F (r0(W ),W ) = 0. In addition,
we would conclude that r(t) ≈ r0(W ) for all t after a short transient to
overcome initial conditions.

In balanced network, currents from excitatory and inhibitory almost
cancel each other and give arise to a total input staying at O(1). I =√
N [Wr + X], where W ab

jk = jabpab
Nb
N . Hence, for the network to ”bal-

anced” after taking N →∞, we have r ≈ −W−1X from cancellation. Here
demonstrate a 2D system with a 2× 2 connectivity matrix W and its entry
W ab

jk = wab. Then the firing rates follow:

r =
1

∆(W )

[
wiiXe − weiXi

−wieXe + weeXi

]
Note that the firing rate for realistic reasons must be positive, so we have
re0 = wiiXe−weiXi

−∆(W ) > 0 and ri0 = −wieXe+weeXi
−∆(W ) > 0. As the external inputs

typically are excitatory neurons, so Xa > 0. Furthermore, by letting the
network size grows very large, the stability analysis on the fast rate equa-
tions would have the Jacobian scaled like O(

√
N) − O(1), which implies
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weewii − wiewei > 0. Hence, putting all together for realistic stable firing
rate equations, we impose a condition Xe

Xi
> wei

wii
> wee

wie
.

Now wee solve the ODE of dr
dt and see how it involves with synaptic weight

dynamics:

dre
dt

=
dre
dwei

dwei

dt
+

dre
dwii

dwii

dt

=
r2
i

weeXi − wieXe

(
(rewie +Xi)ηe(re − ρ0

e)− (rewee +Xe)ηi(ri − ρ0
i )

)
dri
dt

=
dri
dwei

dwei

dt
+

dri
dwii

dwii

dt

=
r3
i

weeXi − wieXe

(
wieηe(re − ρ0

e)− weeηi(ri − ρ0
i )

)

The numerical simulation on the recurrent neuronal network of size
N = 5000 contains an 80− 20% splits for the excitatory and inhibitory sub-
populations. The firing rate above takes the learning rate ηe = 10×Ne, and
ηi = 5×Ni. To generate the initial connectivity matrix W0, we used proba-
bility pab = 0.05, and connectivity strength wee = 50, wei = −350, wei = 225,
and wii = −500. The constant feedforward input is Xe = .4 ∗

√
N , and

Xi = .3 ∗
√
N . These parameters are chosen to satisfied the stability as we

described above Xe
Xi

> wei
wii

> wee
wie

. Target rates are ρe = 0.008 and ρi = 0.01
as the fact that neurons in cortical areas fire around 10Hz, but the inhibitory
neurons fire more frequently than the excitatory neurons.
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4 Results and Discussion

We see that both excitatory and inhibitory firing rates approach to their
target rates within 10 ∼ 30sec. At the early iterations, both excitatory and
inhibitory neurons appear at a high frequency, then gradually cool down
to the target rates and stabilized there as the inhibitory synaptic weight
learned to adapt the new environment. To check the result, we can com-
pared it with the original firing rate dynamics dr

dt = −r + f(I), using a rec-
tified linear f = ga[I]+, where ga = 0.002 from a spiking network simulation.

The plot also showed a similar result with the fast-slow analysis that
the firing rates approach to their targets along with the updates of in-
hibitory synaptic weights. Since the scale of W ai depends on Na, the ef-
fective timescale of the dynamics will hence depend on Na. One direction
that can go beyond is through coarsening, we can subdivide each excitatory
and inhibitory into Ma groups of size ma, and investigate on the firing rate
results, I would expect to have a similar firing rate dynamics.
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