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Background
Some Definitions:

Background

We study Modelling of Neuroscience problems. Consider the
model as: τ ⋅ dy⃗

dx = −y⃗ + Jy⃗ + x⃗

Where y⃗(t) is a vector of neurons’ ”activity”(i.e. firing rates).
and x⃗(t) is a vector of neurons’ external synaptic inputs from
outside the local network.
J is an N by N matrix representing synaptic weights and the
time-course of synaptic filters.
τ is a constant.

Goal: find the solution of y⃗(t) and study the Cross-Special
Density between two stationary processes, denote as
< x⃗(t), y⃗(t) >.

Morales, Su, Zhu Derivation and numerical solution of SDE in Neuroscience



Introduction
Derivation

Our Results
Simulation

Summary

Background
Some Definitions:

Background

We study Modelling of Neuroscience problems. Consider the
model as: τ ⋅ dy⃗

dx = −y⃗ + Jy⃗ + x⃗

Where y⃗(t) is a vector of neurons’ ”activity”(i.e. firing rates).
and x⃗(t) is a vector of neurons’ external synaptic inputs from
outside the local network.
J is an N by N matrix representing synaptic weights and the
time-course of synaptic filters.
τ is a constant.

Goal: find the solution of y⃗(t) and study the Cross-Special
Density between two stationary processes, denote as
< x⃗(t), y⃗(t) >.

Morales, Su, Zhu Derivation and numerical solution of SDE in Neuroscience



Introduction
Derivation

Our Results
Simulation

Summary

Background
Some Definitions:

Background

We study Modelling of Neuroscience problems. Consider the
model as: τ ⋅ dy⃗

dx = −y⃗ + Jy⃗ + x⃗

Where y⃗(t) is a vector of neurons’ ”activity”(i.e. firing rates).
and x⃗(t) is a vector of neurons’ external synaptic inputs from
outside the local network.
J is an N by N matrix representing synaptic weights and the
time-course of synaptic filters.
τ is a constant.

Goal: find the solution of y⃗(t) and study the Cross-Special
Density between two stationary processes, denote as
< x⃗(t), y⃗(t) >.

Morales, Su, Zhu Derivation and numerical solution of SDE in Neuroscience



Introduction
Derivation

Our Results
Simulation

Summary

Background
Some Definitions:

Some Definition:

Stationarity: A process x⃗(t) is stationary if its statistics are
invariant to time translation. i.e. x⃗(t) has the same statistics as
y⃗(t) = x⃗(t − t0)

Statistics: In this project, we are interested in statistics like mean
and variance. Defined x⃗ = E[x⃗(t)] to be the mean of a stationary
process x⃗(t), and this does not depend on t.

Cross-Covairance: For two stationary processe, define
Cxy(τ) = cov(x⃗(t), y⃗(t + τ)) = E[x⃗(t)y⃗(t + τ)] − x⃗ ⋅ y⃗ to be their
cross-covariance function. Note: auto-covariance function...

Cross-spectral density(CSD): The CSD between two stationary
processes is the Fourier Transform of their cross-covariance
function. i.e. < x⃗(t), y⃗(t) > (f ) = C̃xy(f ).
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Solution:y⃗(t)
CSD: < y⃗(t), y⃗(t) >
A Simple Case

Solution: y⃗(t)

Solution of the Model: τ ⋅ dy⃗
dt = −y⃗ + Jy⃗ + x⃗

Solution in terms of Convolution: y⃗(t) = A ∗ (Jy⃗(t) + x⃗(t)).

A is a matrix kernel-matrix only contains diagonal entries such
as a(t) = 1

τ e−t/τH(t).
H(t) is the Heaviside step function
J is a random square matrix with size N.

Each component satisfies y⃗j(t) = a ∗ (Jy⃗j(t) + x⃗j(t)).
For Stationrity, we need to assume J − Id with Re{λ} < 0.
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A Simple Case

CSD: < y⃗(t), y⃗(t) >

CSD of the Model: τ ⋅ dy⃗
dx = −y⃗ + Jy⃗ + x⃗

Given y⃗(t) = A ∗ (Jy⃗(t) + x⃗(t));

Then,

< y⃗ , y⃗ > = < A ∗ (Jy⃗ + x⃗),A ∗ (Jy⃗ + x⃗) >
= . . .

= (Ã−1 − J)−1 < x⃗ , x⃗ > (Ã−1 − J)−∗

Properties: Let K(t) be a time-dependent matrix, we called it a
matrix kernel:
< K ∗ x⃗ , y⃗ >= K̃ < x⃗ , y⃗ >
< x⃗ ,K ∗ y⃗ >=< x⃗ , y⃗ > K̃∗, where K̃∗ is the conjugate-transpose.
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Solution:y⃗(t)
CSD: < y⃗(t), y⃗(t) >
A Simple Case

Solution of a Very Simple Case in 1-D: y(t)

Solution of the Model: τ ⋅ dy
dt = −y + x

Solution in terms of Convolution: y(t) = a ∗ x(t).

RHS = −y(t) + x(t) = −∫
∞

−∞
x(s) ⋅ a(t − s)ds + x(t)

LHS = τ ⋅ dy
dt

= ∫
∞

−∞
x(s) ⋅ −1

τ
e
−(t−s)
τ H(t − s)ds

+ ∫
∞

−∞
x(s) ⋅ e

−(t−s)
τ δ(t − s)ds

= ∫
∞

−∞
−x(s) ⋅ a(t − s)ds + x(t)

= −y(t) + x(t)
= RHS
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Solution:y⃗(t)
CSD: < y⃗(t), y⃗(t) >
A Simple Case

CSD: < y(t),< y(t) >

CSD of the Model: τ ⋅ dy⃗
dt = −y + x

Given y(t) = a ∗ x(t));

Then,

< y , y > = < a ∗ x(t), a ∗ x(t) > (f )
= ã < x(t), x(t) > ã∗(f )

since a(t) = 1
τ e−t/τH(t), we have ã(f ) = 1

1+2πif τ . Often time, we
are interested in lower-frequency CSD, i.e. f = 0, so ã(0) = 1.
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Expectation of CSD:

Statistics of the E[< y⃗ , y⃗ >]
Write < x⃗ , x⃗ > in terms of < y⃗ , y⃗ > since we know how to compute
the average of < x⃗ , x⃗ >:

< x⃗ , x⃗ > = (Â−1 − J) < y⃗ , y⃗ > (Â−1 − J)∗

= (Â−1 − J) < y⃗ , y⃗ > (Â−∗ − J∗)

E[< x⃗ , x⃗ >] = Â−1 E[< y⃗ , y⃗ >]Â−∗

− Â−1 ⋅E[< y⃗ , y⃗ > J∗]
− E[J ⋅ < y⃗ , y⃗ >]Â−∗

+ E[J < y⃗ , y⃗ > J∗]

GOAL: We need to figure out E[< y⃗ , y⃗ > J∗], E[J < y⃗ , y⃗ >], and
E[J < y⃗ , y⃗ > J∗].
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Expectation of CSD:

Solving for the Expectations

For the expectation of a matrix, we only need to figure out each
entry of a matrix [.]jk .

E[< x⃗ , x⃗ >]jk = Â−1
jj E[< y⃗ , y⃗ >]jk Â−∗

kk

− Â−1
jj ⋅E[< y⃗ , y⃗ > J∗]jk

− E[J ⋅ < y⃗ , y⃗ >]jk Â−∗
jk

+ E[J < y⃗ , y⃗ > J∗]jk
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Expectation of CSD:

Solving for the Expectations
E[< y⃗ , y⃗ > J∗]jk = E[< y⃗ , Jy⃗ >]jk ≈ (N − 1) ⋅ < y⃗ , y⃗ > ⋅ J∗ + {y⃗ , y⃗} ⋅ J∗
E[J ⋅ < y⃗ , y⃗ >]jk = E[< Jy⃗ , y⃗ >]jk ≈ (N − 1) ⋅ J ⋅ < y⃗ , y⃗ > + J ⋅ {y⃗ , y⃗}

E[J < y⃗ , y⃗ > J∗]jk = E[< Jy⃗ , Jy⃗ >]jk

≈ (N2 −N) ⋅ J ⋅ < y⃗ , y⃗ > ⋅ J∗ +N ⋅ J ⋅ {y⃗ , y⃗} ⋅ J∗

Let us consider an Erdos-Renyi network, where J is defined as:

Jjk =
⎧⎪⎪⎨⎪⎪⎩

j0√
N

with probability p
0 otherwise

This represents randomly connected ”inhibitory” or ”negative”
interactions in the network.
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Expectation of CSD:

Solving for the Expectations
As N →∞, this becomes:

< x⃗ , x⃗ > = < y⃗ , y⃗ >[1 − 2(N − 1) ⋅ pj0√
N
+ (N2 −N) ⋅

p2j2
0

N
]

− {y⃗ , y⃗}[2 ⋅ pj0√
N
− p2j2

0 ]

Now, we follow the same process to the diagonal part of
E[< x⃗ , x⃗ >], E[< x⃗ , x⃗ >]jj . After simplifying:

{x⃗ , x⃗} = {y⃗ , y⃗}[1 − 2 ⋅ pj0√
N
+ p2j2

0 ]

− < y⃗ , y⃗ >[2(N − 1) ⋅ pj0√
N
− (N2 −N) ⋅

p2j2
0

N
]

Morales, Su, Zhu Derivation and numerical solution of SDE in Neuroscience



Introduction
Derivation

Our Results
Simulation

Summary

Expectation of CSD:

Solving for the Expectations
As N →∞, this becomes:

< x⃗ , x⃗ > = < y⃗ , y⃗ >[1 − 2(N − 1) ⋅ pj0√
N
+ (N2 −N) ⋅

p2j2
0

N
]

− {y⃗ , y⃗}[2 ⋅ pj0√
N
− p2j2

0 ]

Now, we follow the same process to the diagonal part of
E[< x⃗ , x⃗ >], E[< x⃗ , x⃗ >]jj . After simplifying:

{x⃗ , x⃗} = {y⃗ , y⃗}[1 − 2 ⋅ pj0√
N
+ p2j2

0 ]

− < y⃗ , y⃗ >[2(N − 1) ⋅ pj0√
N
− (N2 −N) ⋅

p2j2
0

N
]

Morales, Su, Zhu Derivation and numerical solution of SDE in Neuroscience



Introduction
Derivation

Our Results
Simulation

Summary

Expectation of CSD:

Solving for the Expectations
As N →∞, this becomes:

< x⃗ , x⃗ > = < y⃗ , y⃗ >[1 − 2(N − 1) ⋅ pj0√
N
+ (N2 −N) ⋅

p2j2
0

N
]

− {y⃗ , y⃗}[2 ⋅ pj0√
N
− p2j2

0 ]

Now, we follow the same process to the diagonal part of
E[< x⃗ , x⃗ >], E[< x⃗ , x⃗ >]jj . After simplifying:

{x⃗ , x⃗} = {y⃗ , y⃗}[1 − 2 ⋅ pj0√
N
+ p2j2

0 ]

− < y⃗ , y⃗ >[2(N − 1) ⋅ pj0√
N
− (N2 −N) ⋅

p2j2
0

N
]

Morales, Su, Zhu Derivation and numerical solution of SDE in Neuroscience



Introduction
Derivation

Our Results
Simulation

Summary

Expectation of CSD:

Solving for the Expectations

To see the long-term behaviour, we use O and o notation,

⎧⎪⎪⎨⎪⎪⎩

< x⃗ , x⃗ > = < y⃗ , y⃗ > ⋅N(p2j2
o) + o(N) − {y⃗ , y⃗} ⋅ (−p2j2

o) + o(1)
{x⃗ , x⃗} = {y⃗ , y⃗} ⋅ (1 + p2j2

o) + o(1) − < y⃗ , y⃗ > ⋅N(−p2j2
o) + o(N)

Hence, < y⃗ , y⃗ > = −{y⃗ ,y⃗}N + <x⃗ ,x⃗>p2j2
0 N + o( 1

N ),

So we need to find a C according to {y⃗ , y⃗} and < x⃗ , x⃗ > such that
< y⃗ , y⃗ > = C

N + o( 1
N ) ≈ O( 1

N )
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Expectation of CSD:

Identity Case: < x⃗ , x⃗ >= In

With the identity case, only the diagonal contributes.
So, < x⃗ , x⃗ > = 0 and {x⃗ , x⃗} = 1.

⎧⎪⎪⎨⎪⎪⎩

0 = < y⃗ , y⃗ > ⋅N(p2j2
o) + o(N) + {y⃗ , y⃗} ⋅ (p2j2

o) + o(1)
1 = {y⃗ , y⃗} ⋅ (1 + p2j2

o) + o(1) + < y⃗ , y⃗ > ⋅N(p2j2
o) + o(N)

Then {y⃗ , y⃗} = 1; together with < x⃗ , x⃗ > = 0, we have C = −1.
We expect < y⃗ , y⃗ > = − 1

N + o( 1
N )

Morales, Su, Zhu Derivation and numerical solution of SDE in Neuroscience
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Expectation of CSD:

< x⃗ , x⃗ >∼ N(µ,σ) with Fixed Parameters

Since for each entry of < x⃗ , x⃗ > has expectation µ, we have
< x⃗ , x⃗ > = {x⃗ , x⃗} = µ.

⎧⎪⎪⎨⎪⎪⎩

µ = < y⃗ , y⃗ > ⋅N(p2j2
o) + o(N) + {y⃗ , y⃗} ⋅ (p2j2

o) + o(1)
µ = {y⃗ , y⃗} ⋅ (1 + p2j2

o) + o(1) + < y⃗ , y⃗ > ⋅N(p2j2
o) + o(N)

then {y⃗ , y⃗} = 0, so C = µ
p2j2

0
.

We expect < y⃗ , y⃗ > = C
N + o( 1

N ) = µ
p2j2

0 ⋅N
+ o( 1

N )
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Expectation of CSD:

< x⃗ , x⃗ >∼ N(Nµ,
√

Nσ) with Non-Fixed Parameters

Since for each entry of < x⃗ , x⃗ > has expectation Nµ, comparing
with the one with fixed-parameters, C would be µ

p2j2
0
⋅N.

< y⃗ , y⃗ > = µ
p2j2

0
+ o(1)
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Expectation
Variance
OU Process

Identity Case
< x⃗ , x⃗ >= In:
Theoretical value: < y⃗ , y⃗ > = − 1

N + o( 1
N )
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Expectation
Variance
OU Process

Normal Case With Fixed Parameters
< x⃗ , x⃗ >∼ N(µ,σ2):
Theoretical value: < y⃗ , y⃗ > = C

N + o( 1
N ) = µ

p2j2
0 ⋅N

+ o( 1
N )
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Expectation
Variance
OU Process

Normal Case With Non-fixed Parameters
< x⃗ , x⃗ >∼ N(Nµ,

√
Nσ2):

Theoretical value: < y⃗ , y⃗ > = C + o( 1
N ) = µ

p2j2
0
+ o(1)
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Expectation
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OU Process

Identity Case
< x⃗ , x⃗ >= In:
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Expectation
Variance
OU Process

Normal Case

< x⃗ , x⃗ >∼ N(µ,σ2)orN(Nµ,
√

Nσ2):
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Expectation
Variance
OU Process

Numerically Simulate SDE:

dy⃗
dt = F(y⃗ , t) +G(y⃗ , t)dW⃗

dt , where W⃗ (t) ∈ Rm is an m-dimensional
Winer process, and G ∶ Rn ×R→ Rn×m

In our model, it would be:
y⃗i+1 = y⃗i + (J − I)y⃗i ⋅ dt + dw , where dW ∼ N(0,

√
dt), i is the steps

that we partition on .

By Fourier transfer, I can get limτ0→∞
cov(Nyj(τ0),Nyk (τ0))

τ0
=< yj , yk >

In simulation, I can choose a large τ0 to estimate E[< yj , yk >]:
cov(Nyj (τ0),Nyk (τ0))

τ0
≈< yj , yk >
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In Summary:

Our Neuroscience Model:
τ ⋅ dy⃗

dt = −y⃗ + Jy⃗ + x⃗

1 Solution: y⃗(t) = A ∗ (Jy⃗(t) + x⃗(t)).
2 Cross-Spectral Density:

< y⃗ , y⃗ >= (Ã−1 − J)−1 < x⃗ , x⃗ > (Ã−1 − J)−∗

3 E[< y⃗ , y⃗ >] ∶= < y⃗ , y⃗ > = −{y⃗ ,y⃗}N + <x⃗ ,x⃗>p2j2
0 N + o( 1

N )

if < x⃗ , x⃗ >= I, then < y⃗ , y⃗ > ∼ O( 1
N ).

if < x⃗ , x⃗ >∼ N(µ,σ2), then < y⃗ , y⃗ > ∼ O( 1
N ).

if < x⃗ , x⃗ >∼ N(Nµ,
√

Nσ2), then < y⃗ , y⃗ > ∼ O(1).
4 Simulations confirms the Theoretical Derivations. ,
5 Investigate on Variance and OU-Process.
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Future Work: Derive Theoretical Variance and other Statistics.

Any Questions ??

Thank You ,
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