
Introduction
Derivation

Our Results
Simulation

Summary

Derivation and numerical solution of SDE in
Neuroscience

Diana Morales1, Bingyue Su1, Renjun Zhu1

May 2, 2019

Morales, Su, Zhu Derivation and numerical solution of SDE in Neuroscience

Introduction
Derivation

Our Results
Simulation

Summary

Table of Contents
1 Introduction

Background
Some Definitions:

2 Derivation
Solution:y⃗(t)
CSD: < y⃗(t), y⃗(t) >
A Simple Case

3 Our Results
Expectation of CSD:

4 Simulation
Expectation
Variance
OU Process

5 Summary
Morales, Su, Zhu Derivation and numerical solution of SDE in Neuroscience

Introduction
Derivation

Our Results
Simulation

Summary

Background
Some Definitions:

Background

We study Modelling of Neuroscience problems. Consider the
model as: τ ⋅ dy⃗

dx = −y⃗ + Jy⃗ + x⃗

Where y⃗(t) is a vector of neurons’ ”activity”(i.e. firing rates).
and x⃗(t) is a vector of neurons’ external synaptic inputs from
outside the local network.
J is an N by N matrix representing synaptic weights and the
time-course of synaptic filters.
τ is a constant.

Goal: find the solution of y⃗(t) and study the Cross-Special
Density between two stationary processes, denote as
< x⃗(t), y⃗(t) >.

Morales, Su, Zhu Derivation and numerical solution of SDE in Neuroscience

Introduction
Derivation

Our Results
Simulation

Summary

Background
Some Definitions:

Background

We study Modelling of Neuroscience problems. Consider the
model as: τ ⋅ dy⃗

dx = −y⃗ + Jy⃗ + x⃗

Where y⃗(t) is a vector of neurons’ ”activity”(i.e. firing rates).
and x⃗(t) is a vector of neurons’ external synaptic inputs from
outside the local network.
J is an N by N matrix representing synaptic weights and the
time-course of synaptic filters.
τ is a constant.

Goal: find the solution of y⃗(t) and study the Cross-Special
Density between two stationary processes, denote as
< x⃗(t), y⃗(t) >.

Morales, Su, Zhu Derivation and numerical solution of SDE in Neuroscience

Introduction
Derivation

Our Results
Simulation

Summary

Background
Some Definitions:

Background

We study Modelling of Neuroscience problems. Consider the
model as: τ ⋅ dy⃗

dx = −y⃗ + Jy⃗ + x⃗

Where y⃗(t) is a vector of neurons’ ”activity”(i.e. firing rates).
and x⃗(t) is a vector of neurons’ external synaptic inputs from
outside the local network.
J is an N by N matrix representing synaptic weights and the
time-course of synaptic filters.
τ is a constant.

Goal: find the solution of y⃗(t) and study the Cross-Special
Density between two stationary processes, denote as
< x⃗(t), y⃗(t) >.

Morales, Su, Zhu Derivation and numerical solution of SDE in Neuroscience

Introduction
Derivation

Our Results
Simulation

Summary

Background
Some Definitions:

Some Definition:

Stationarity: A process x⃗(t) is stationary if its statistics are
invariant to time translation. i.e. x⃗(t) has the same statistics as
y⃗(t) = x⃗(t − t0)

Statistics: In this project, we are interested in statistics like mean
and variance. Defined x⃗ = E[x⃗(t)] to be the mean of a stationary
process x⃗(t), and this does not depend on t.

Cross-Covairance: For two stationary processe, define
Cxy(τ) = cov(x⃗(t), y⃗(t + τ)) = E[x⃗(t)y⃗(t + τ)] − x⃗ ⋅ y⃗ to be their
cross-covariance function. Note: auto-covariance function...

Cross-spectral density(CSD): The CSD between two stationary
processes is the Fourier Transform of their cross-covariance
function. i.e. < x⃗(t), y⃗(t) > (f) = C̃xy(f).

Morales, Su, Zhu Derivation and numerical solution of SDE in Neuroscience

Introduction
Derivation

Our Results
Simulation

Summary

Background
Some Definitions:

Some Definition:

Stationarity: A process x⃗(t) is stationary if its statistics are
invariant to time translation. i.e. x⃗(t) has the same statistics as
y⃗(t) = x⃗(t − t0)

Statistics: In this project, we are interested in statistics like mean
and variance. Defined x⃗ = E[x⃗(t)] to be the mean of a stationary
process x⃗(t), and this does not depend on t.

Cross-Covairance: For two stationary processe, define
Cxy(τ) = cov(x⃗(t), y⃗(t + τ)) = E[x⃗(t)y⃗(t + τ)] − x⃗ ⋅ y⃗ to be their
cross-covariance function. Note: auto-covariance function...

Cross-spectral density(CSD): The CSD between two stationary
processes is the Fourier Transform of their cross-covariance
function. i.e. < x⃗(t), y⃗(t) > (f) = C̃xy(f).

Morales, Su, Zhu Derivation and numerical solution of SDE in Neuroscience

Introduction
Derivation

Our Results
Simulation

Summary

Background
Some Definitions:

Some Definition:

Stationarity: A process x⃗(t) is stationary if its statistics are
invariant to time translation. i.e. x⃗(t) has the same statistics as
y⃗(t) = x⃗(t − t0)

Statistics: In this project, we are interested in statistics like mean
and variance. Defined x⃗ = E[x⃗(t)] to be the mean of a stationary
process x⃗(t), and this does not depend on t.

Cross-Covairance: For two stationary processe, define
Cxy(τ) = cov(x⃗(t), y⃗(t + τ)) = E[x⃗(t)y⃗(t + τ)] − x⃗ ⋅ y⃗ to be their
cross-covariance function. Note: auto-covariance function...

Cross-spectral density(CSD): The CSD between two stationary
processes is the Fourier Transform of their cross-covariance
function. i.e. < x⃗(t), y⃗(t) > (f) = C̃xy(f).

Morales, Su, Zhu Derivation and numerical solution of SDE in Neuroscience

Introduction
Derivation

Our Results
Simulation

Summary

Background
Some Definitions:

Some Definition:

Stationarity: A process x⃗(t) is stationary if its statistics are
invariant to time translation. i.e. x⃗(t) has the same statistics as
y⃗(t) = x⃗(t − t0)

Statistics: In this project, we are interested in statistics like mean
and variance. Defined x⃗ = E[x⃗(t)] to be the mean of a stationary
process x⃗(t), and this does not depend on t.

Cross-Covairance: For two stationary processe, define
Cxy(τ) = cov(x⃗(t), y⃗(t + τ)) = E[x⃗(t)y⃗(t + τ)] − x⃗ ⋅ y⃗ to be their
cross-covariance function. Note: auto-covariance function...

Cross-spectral density(CSD): The CSD between two stationary
processes is the Fourier Transform of their cross-covariance
function. i.e. < x⃗(t), y⃗(t) > (f) = C̃xy(f).

Morales, Su, Zhu Derivation and numerical solution of SDE in Neuroscience

Introduction
Derivation

Our Results
Simulation

Summary

Solution:y⃗(t)
CSD: < y⃗(t), y⃗(t) >
A Simple Case

Solution: y⃗(t)

Solution of the Model: τ ⋅ dy⃗
dt = −y⃗ + Jy⃗ + x⃗

Solution in terms of Convolution: y⃗(t) = A ∗ (Jy⃗(t) + x⃗(t)).

A is a matrix kernel-matrix only contains diagonal entries such
as a(t) = 1

τ e−t/τH(t).
H(t) is the Heaviside step function
J is a random square matrix with size N.

Each component satisfies y⃗j(t) = a ∗ (Jy⃗j(t) + x⃗j(t)).
For Stationrity, we need to assume J − Id with Re{λ} < 0.

Morales, Su, Zhu Derivation and numerical solution of SDE in Neuroscience

Introduction
Derivation

Our Results
Simulation

Summary

Solution:y⃗(t)
CSD: < y⃗(t), y⃗(t) >
A Simple Case

CSD: < y⃗(t), y⃗(t) >

CSD of the Model: τ ⋅ dy⃗
dx = −y⃗ + Jy⃗ + x⃗

Given y⃗(t) = A ∗ (Jy⃗(t) + x⃗(t));

Then,

< y⃗ , y⃗ > = < A ∗ (Jy⃗ + x⃗),A ∗ (Jy⃗ + x⃗) >
= . . .

= (Ã−1 − J)−1 < x⃗ , x⃗ > (Ã−1 − J)−∗

Properties: Let K(t) be a time-dependent matrix, we called it a
matrix kernel:
< K ∗ x⃗ , y⃗ >= K̃ < x⃗ , y⃗ >
< x⃗ ,K ∗ y⃗ >=< x⃗ , y⃗ > K̃∗, where K̃∗ is the conjugate-transpose.

Morales, Su, Zhu Derivation and numerical solution of SDE in Neuroscience

Introduction
Derivation

Our Results
Simulation

Summary

Solution:y⃗(t)
CSD: < y⃗(t), y⃗(t) >
A Simple Case

Solution of a Very Simple Case in 1-D: y(t)

Solution of the Model: τ ⋅ dy
dt = −y + x

Solution in terms of Convolution: y(t) = a ∗ x(t).

RHS = −y(t) + x(t) = −∫
∞

−∞
x(s) ⋅ a(t − s)ds + x(t)

LHS = τ ⋅ dy
dt

= ∫
∞

−∞
x(s) ⋅ −1

τ
e
−(t−s)
τ H(t − s)ds

+ ∫
∞

−∞
x(s) ⋅ e

−(t−s)
τ δ(t − s)ds

= ∫
∞

−∞
−x(s) ⋅ a(t − s)ds + x(t)

= −y(t) + x(t)
= RHS

Morales, Su, Zhu Derivation and numerical solution of SDE in Neuroscience

Introduction
Derivation

Our Results
Simulation

Summary

Solution:y⃗(t)
CSD: < y⃗(t), y⃗(t) >
A Simple Case

CSD: < y(t),< y(t) >

CSD of the Model: τ ⋅ dy⃗
dt = −y + x

Given y(t) = a ∗ x(t));

Then,

< y , y > = < a ∗ x(t), a ∗ x(t) > (f)
= ã < x(t), x(t) > ã∗(f)

since a(t) = 1
τ e−t/τH(t), we have ã(f) = 1

1+2πif τ . Often time, we
are interested in lower-frequency CSD, i.e. f = 0, so ã(0) = 1.

Morales, Su, Zhu Derivation and numerical solution of SDE in Neuroscience

Introduction
Derivation

Our Results
Simulation

Summary

Expectation of CSD:

Statistics of the E[< y⃗ , y⃗ >]
Write < x⃗ , x⃗ > in terms of < y⃗ , y⃗ > since we know how to compute
the average of < x⃗ , x⃗ >:

< x⃗ , x⃗ > = (Â−1 − J) < y⃗ , y⃗ > (Â−1 − J)∗

= (Â−1 − J) < y⃗ , y⃗ > (Â−∗ − J∗)

E[< x⃗ , x⃗ >] = Â−1 E[< y⃗ , y⃗ >]Â−∗

− Â−1 ⋅E[< y⃗ , y⃗ > J∗]
− E[J ⋅ < y⃗ , y⃗ >]Â−∗

+ E[J < y⃗ , y⃗ > J∗]

GOAL: We need to figure out E[< y⃗ , y⃗ > J∗], E[J < y⃗ , y⃗ >], and
E[J < y⃗ , y⃗ > J∗].

Morales, Su, Zhu Derivation and numerical solution of SDE in Neuroscience

Introduction
Derivation

Our Results
Simulation

Summary

Expectation of CSD:

Statistics of the E[< y⃗ , y⃗ >]
Write < x⃗ , x⃗ > in terms of < y⃗ , y⃗ > since we know how to compute
the average of < x⃗ , x⃗ >:

< x⃗ , x⃗ > = (Â−1 − J) < y⃗ , y⃗ > (Â−1 − J)∗

= (Â−1 − J) < y⃗ , y⃗ > (Â−∗ − J∗)

E[< x⃗ , x⃗ >] = Â−1 E[< y⃗ , y⃗ >]Â−∗

− Â−1 ⋅E[< y⃗ , y⃗ > J∗]
− E[J ⋅ < y⃗ , y⃗ >]Â−∗

+ E[J < y⃗ , y⃗ > J∗]

GOAL: We need to figure out E[< y⃗ , y⃗ > J∗], E[J < y⃗ , y⃗ >], and
E[J < y⃗ , y⃗ > J∗].

Morales, Su, Zhu Derivation and numerical solution of SDE in Neuroscience

Introduction
Derivation

Our Results
Simulation

Summary

Expectation of CSD:

Statistics of the E[< y⃗ , y⃗ >]
Write < x⃗ , x⃗ > in terms of < y⃗ , y⃗ > since we know how to compute
the average of < x⃗ , x⃗ >:

< x⃗ , x⃗ > = (Â−1 − J) < y⃗ , y⃗ > (Â−1 − J)∗

= (Â−1 − J) < y⃗ , y⃗ > (Â−∗ − J∗)

E[< x⃗ , x⃗ >] = Â−1 E[< y⃗ , y⃗ >]Â−∗

− Â−1 ⋅E[< y⃗ , y⃗ > J∗]
− E[J ⋅ < y⃗ , y⃗ >]Â−∗

+ E[J < y⃗ , y⃗ > J∗]

GOAL: We need to figure out E[< y⃗ , y⃗ > J∗], E[J < y⃗ , y⃗ >], and
E[J < y⃗ , y⃗ > J∗].

Morales, Su, Zhu Derivation and numerical solution of SDE in Neuroscience

Introduction
Derivation

Our Results
Simulation

Summary

Expectation of CSD:

Solving for the Expectations

For the expectation of a matrix, we only need to figure out each
entry of a matrix [.]jk .

E[< x⃗ , x⃗ >]jk = Â−1
jj E[< y⃗ , y⃗ >]jk Â−∗

kk

− Â−1
jj ⋅E[< y⃗ , y⃗ > J∗]jk

− E[J ⋅ < y⃗ , y⃗ >]jk Â−∗
jk

+ E[J < y⃗ , y⃗ > J∗]jk

Morales, Su, Zhu Derivation and numerical solution of SDE in Neuroscience

Introduction
Derivation

Our Results
Simulation

Summary

Expectation of CSD:

Solving for the Expectations

For the expectation of a matrix, we only need to figure out each
entry of a matrix [.]jk .

E[< x⃗ , x⃗ >]jk = Â−1
jj E[< y⃗ , y⃗ >]jk Â−∗

kk

− Â−1
jj ⋅E[< y⃗ , y⃗ > J∗]jk

− E[J ⋅ < y⃗ , y⃗ >]jk Â−∗
jk

+ E[J < y⃗ , y⃗ > J∗]jk

Morales, Su, Zhu Derivation and numerical solution of SDE in Neuroscience

Introduction
Derivation

Our Results
Simulation

Summary

Expectation of CSD:

Solving for the Expectations
E[< y⃗ , y⃗ > J∗]jk = E[< y⃗ , Jy⃗ >]jk ≈ (N − 1) ⋅ < y⃗ , y⃗ > ⋅ J∗ + {y⃗ , y⃗} ⋅ J∗
E[J ⋅ < y⃗ , y⃗ >]jk = E[< Jy⃗ , y⃗ >]jk ≈ (N − 1) ⋅ J ⋅ < y⃗ , y⃗ > + J ⋅ {y⃗ , y⃗}

E[J < y⃗ , y⃗ > J∗]jk = E[< Jy⃗ , Jy⃗ >]jk

≈ (N2 −N) ⋅ J ⋅ < y⃗ , y⃗ > ⋅ J∗ +N ⋅ J ⋅ {y⃗ , y⃗} ⋅ J∗

Let us consider an Erdos-Renyi network, where J is defined as:

Jjk =
⎧⎪⎪⎨⎪⎪⎩

j0√
N

with probability p
0 otherwise

This represents randomly connected ”inhibitory” or ”negative”
interactions in the network.

Morales, Su, Zhu Derivation and numerical solution of SDE in Neuroscience

Introduction
Derivation

Our Results
Simulation

Summary

Expectation of CSD:

Solving for the Expectations
As N →∞, this becomes:

< x⃗ , x⃗ > = < y⃗ , y⃗ >[1 − 2(N − 1) ⋅ pj0√
N
+ (N2 −N) ⋅

p2j2
0

N
]

− {y⃗ , y⃗}[2 ⋅ pj0√
N
− p2j2

0]

Now, we follow the same process to the diagonal part of
E[< x⃗ , x⃗ >], E[< x⃗ , x⃗ >]jj . After simplifying:

{x⃗ , x⃗} = {y⃗ , y⃗}[1 − 2 ⋅ pj0√
N
+ p2j2

0]

− < y⃗ , y⃗ >[2(N − 1) ⋅ pj0√
N
− (N2 −N) ⋅

p2j2
0

N
]

Morales, Su, Zhu Derivation and numerical solution of SDE in Neuroscience

Introduction
Derivation

Our Results
Simulation

Summary

Expectation of CSD:

Solving for the Expectations
As N →∞, this becomes:

< x⃗ , x⃗ > = < y⃗ , y⃗ >[1 − 2(N − 1) ⋅ pj0√
N
+ (N2 −N) ⋅

p2j2
0

N
]

− {y⃗ , y⃗}[2 ⋅ pj0√
N
− p2j2

0]

Now, we follow the same process to the diagonal part of
E[< x⃗ , x⃗ >], E[< x⃗ , x⃗ >]jj . After simplifying:

{x⃗ , x⃗} = {y⃗ , y⃗}[1 − 2 ⋅ pj0√
N
+ p2j2

0]

− < y⃗ , y⃗ >[2(N − 1) ⋅ pj0√
N
− (N2 −N) ⋅

p2j2
0

N
]

Morales, Su, Zhu Derivation and numerical solution of SDE in Neuroscience

Introduction
Derivation

Our Results
Simulation

Summary

Expectation of CSD:

Solving for the Expectations
As N →∞, this becomes:

< x⃗ , x⃗ > = < y⃗ , y⃗ >[1 − 2(N − 1) ⋅ pj0√
N
+ (N2 −N) ⋅

p2j2
0

N
]

− {y⃗ , y⃗}[2 ⋅ pj0√
N
− p2j2

0]

Now, we follow the same process to the diagonal part of
E[< x⃗ , x⃗ >], E[< x⃗ , x⃗ >]jj . After simplifying:

{x⃗ , x⃗} = {y⃗ , y⃗}[1 − 2 ⋅ pj0√
N
+ p2j2

0]

− < y⃗ , y⃗ >[2(N − 1) ⋅ pj0√
N
− (N2 −N) ⋅

p2j2
0

N
]

Morales, Su, Zhu Derivation and numerical solution of SDE in Neuroscience

Introduction
Derivation

Our Results
Simulation

Summary

Expectation of CSD:

Solving for the Expectations

To see the long-term behaviour, we use O and o notation,

⎧⎪⎪⎨⎪⎪⎩

< x⃗ , x⃗ > = < y⃗ , y⃗ > ⋅N(p2j2
o) + o(N) − {y⃗ , y⃗} ⋅ (−p2j2

o) + o(1)
{x⃗ , x⃗} = {y⃗ , y⃗} ⋅ (1 + p2j2

o) + o(1) − < y⃗ , y⃗ > ⋅N(−p2j2
o) + o(N)

Hence, < y⃗ , y⃗ > = −{y⃗ ,y⃗}N + <x⃗ ,x⃗>p2j2
0 N + o(1

N),

So we need to find a C according to {y⃗ , y⃗} and < x⃗ , x⃗ > such that
< y⃗ , y⃗ > = C

N + o(1
N) ≈ O(1

N)

Morales, Su, Zhu Derivation and numerical solution of SDE in Neuroscience

Introduction
Derivation

Our Results
Simulation

Summary

Expectation of CSD:

Identity Case: < x⃗ , x⃗ >= In

With the identity case, only the diagonal contributes.
So, < x⃗ , x⃗ > = 0 and {x⃗ , x⃗} = 1.

⎧⎪⎪⎨⎪⎪⎩

0 = < y⃗ , y⃗ > ⋅N(p2j2
o) + o(N) + {y⃗ , y⃗} ⋅ (p2j2

o) + o(1)
1 = {y⃗ , y⃗} ⋅ (1 + p2j2

o) + o(1) + < y⃗ , y⃗ > ⋅N(p2j2
o) + o(N)

Then {y⃗ , y⃗} = 1; together with < x⃗ , x⃗ > = 0, we have C = −1.
We expect < y⃗ , y⃗ > = − 1

N + o(1
N)

Morales, Su, Zhu Derivation and numerical solution of SDE in Neuroscience

Introduction
Derivation

Our Results
Simulation

Summary

Expectation of CSD:

< x⃗ , x⃗ >∼ N(µ,σ) with Fixed Parameters

Since for each entry of < x⃗ , x⃗ > has expectation µ, we have
< x⃗ , x⃗ > = {x⃗ , x⃗} = µ.

⎧⎪⎪⎨⎪⎪⎩

µ = < y⃗ , y⃗ > ⋅N(p2j2
o) + o(N) + {y⃗ , y⃗} ⋅ (p2j2

o) + o(1)
µ = {y⃗ , y⃗} ⋅ (1 + p2j2

o) + o(1) + < y⃗ , y⃗ > ⋅N(p2j2
o) + o(N)

then {y⃗ , y⃗} = 0, so C = µ
p2j2

0
.

We expect < y⃗ , y⃗ > = C
N + o(1

N) = µ
p2j2

0 ⋅N
+ o(1

N)

Morales, Su, Zhu Derivation and numerical solution of SDE in Neuroscience

Introduction
Derivation

Our Results
Simulation

Summary

Expectation of CSD:

< x⃗ , x⃗ >∼ N(Nµ,
√

Nσ) with Non-Fixed Parameters

Since for each entry of < x⃗ , x⃗ > has expectation Nµ, comparing
with the one with fixed-parameters, C would be µ

p2j2
0
⋅N.

< y⃗ , y⃗ > = µ
p2j2

0
+ o(1)

Morales, Su, Zhu Derivation and numerical solution of SDE in Neuroscience

Introduction
Derivation

Our Results
Simulation

Summary

Expectation
Variance
OU Process

Identity Case
< x⃗ , x⃗ >= In:
Theoretical value: < y⃗ , y⃗ > = − 1

N + o(1
N)

Morales, Su, Zhu Derivation and numerical solution of SDE in Neuroscience

Introduction
Derivation

Our Results
Simulation

Summary

Expectation
Variance
OU Process

Normal Case With Fixed Parameters
< x⃗ , x⃗ >∼ N(µ,σ2):
Theoretical value: < y⃗ , y⃗ > = C

N + o(1
N) = µ

p2j2
0 ⋅N

+ o(1
N)

Morales, Su, Zhu Derivation and numerical solution of SDE in Neuroscience

Introduction
Derivation

Our Results
Simulation

Summary

Expectation
Variance
OU Process

Normal Case With Non-fixed Parameters
< x⃗ , x⃗ >∼ N(Nµ,

√
Nσ2):

Theoretical value: < y⃗ , y⃗ > = C + o(1
N) = µ

p2j2
0
+ o(1)

Morales, Su, Zhu Derivation and numerical solution of SDE in Neuroscience

Introduction
Derivation

Our Results
Simulation

Summary

Expectation
Variance
OU Process

Identity Case
< x⃗ , x⃗ >= In:

Morales, Su, Zhu Derivation and numerical solution of SDE in Neuroscience

Introduction
Derivation

Our Results
Simulation

Summary

Expectation
Variance
OU Process

Normal Case

< x⃗ , x⃗ >∼ N(µ,σ2)orN(Nµ,
√

Nσ2):

Morales, Su, Zhu Derivation and numerical solution of SDE in Neuroscience

Introduction
Derivation

Our Results
Simulation

Summary

Expectation
Variance
OU Process

Numerically Simulate SDE:

dy⃗
dt = F(y⃗ , t) +G(y⃗ , t)dW⃗

dt , where W⃗ (t) ∈ Rm is an m-dimensional
Winer process, and G ∶ Rn ×R→ Rn×m

In our model, it would be:
y⃗i+1 = y⃗i + (J − I)y⃗i ⋅ dt + dw , where dW ∼ N(0,

√
dt), i is the steps

that we partition on .

By Fourier transfer, I can get limτ0→∞
cov(Nyj(τ0),Nyk (τ0))

τ0
=< yj , yk >

In simulation, I can choose a large τ0 to estimate E[< yj , yk >]:
cov(Nyj (τ0),Nyk (τ0))

τ0
≈< yj , yk >

Morales, Su, Zhu Derivation and numerical solution of SDE in Neuroscience

Introduction
Derivation

Our Results
Simulation

Summary

Expectation
Variance
OU Process

Numerically Simulate SDE:

dy⃗
dt = F(y⃗ , t) +G(y⃗ , t)dW⃗

dt , where W⃗ (t) ∈ Rm is an m-dimensional
Winer process, and G ∶ Rn ×R→ Rn×m

In our model, it would be:
y⃗i+1 = y⃗i + (J − I)y⃗i ⋅ dt + dw , where dW ∼ N(0,

√
dt), i is the steps

that we partition on .

By Fourier transfer, I can get limτ0→∞
cov(Nyj(τ0),Nyk (τ0))

τ0
=< yj , yk >

In simulation, I can choose a large τ0 to estimate E[< yj , yk >]:
cov(Nyj (τ0),Nyk (τ0))

τ0
≈< yj , yk >

Morales, Su, Zhu Derivation and numerical solution of SDE in Neuroscience

Introduction
Derivation

Our Results
Simulation

Summary

Expectation
Variance
OU Process

Numerically Simulate SDE:

dy⃗
dt = F(y⃗ , t) +G(y⃗ , t)dW⃗

dt , where W⃗ (t) ∈ Rm is an m-dimensional
Winer process, and G ∶ Rn ×R→ Rn×m

In our model, it would be:
y⃗i+1 = y⃗i + (J − I)y⃗i ⋅ dt + dw , where dW ∼ N(0,

√
dt), i is the steps

that we partition on .

By Fourier transfer, I can get limτ0→∞
cov(Nyj(τ0),Nyk (τ0))

τ0
=< yj , yk >

In simulation, I can choose a large τ0 to estimate E[< yj , yk >]:
cov(Nyj (τ0),Nyk (τ0))

τ0
≈< yj , yk >

Morales, Su, Zhu Derivation and numerical solution of SDE in Neuroscience

Introduction
Derivation

Our Results
Simulation

Summary

Expectation
Variance
OU Process

Numerically Simulate SDE:

dy⃗
dt = F(y⃗ , t) +G(y⃗ , t)dW⃗

dt , where W⃗ (t) ∈ Rm is an m-dimensional
Winer process, and G ∶ Rn ×R→ Rn×m

In our model, it would be:
y⃗i+1 = y⃗i + (J − I)y⃗i ⋅ dt + dw , where dW ∼ N(0,

√
dt), i is the steps

that we partition on .

By Fourier transfer, I can get limτ0→∞
cov(Nyj(τ0),Nyk (τ0))

τ0
=< yj , yk >

In simulation, I can choose a large τ0 to estimate E[< yj , yk >]:
cov(Nyj (τ0),Nyk (τ0))

τ0
≈< yj , yk >

Morales, Su, Zhu Derivation and numerical solution of SDE in Neuroscience

Introduction
Derivation

Our Results
Simulation

Summary

Expectation
Variance
OU Process

Numerically Simulate SDE:

Morales, Su, Zhu Derivation and numerical solution of SDE in Neuroscience

Introduction
Derivation

Our Results
Simulation

Summary

In Summary:

Our Neuroscience Model:
τ ⋅ dy⃗

dt = −y⃗ + Jy⃗ + x⃗

1 Solution: y⃗(t) = A ∗ (Jy⃗(t) + x⃗(t)).
2 Cross-Spectral Density:

< y⃗ , y⃗ >= (Ã−1 − J)−1 < x⃗ , x⃗ > (Ã−1 − J)−∗

3 E[< y⃗ , y⃗ >] ∶= < y⃗ , y⃗ > = −{y⃗ ,y⃗}N + <x⃗ ,x⃗>p2j2
0 N + o(1

N)

if < x⃗ , x⃗ >= I, then < y⃗ , y⃗ > ∼ O(1
N).

if < x⃗ , x⃗ >∼ N(µ,σ2), then < y⃗ , y⃗ > ∼ O(1
N).

if < x⃗ , x⃗ >∼ N(Nµ,
√

Nσ2), then < y⃗ , y⃗ > ∼ O(1).
4 Simulations confirms the Theoretical Derivations. ,
5 Investigate on Variance and OU-Process.

Morales, Su, Zhu Derivation and numerical solution of SDE in Neuroscience

Future Work: Derive Theoretical Variance and other Statistics.

Any Questions ??

Thank You ,

Introduction
Derivation

Our Results
Simulation

Summary

Reference

D. Dahmen, S. Grun, M. Diesmann, and M. Helias, Two Types
of Criticality in the brain, (2017).

C. Baker, C. Ebsch, I. Lampl, and R. Rosenbaum The
correlated state om balanced neronal networks, (2019).

Morales, Su, Zhu Derivation and numerical solution of SDE in Neuroscience

	Introduction
	Background
	Some Definitions:

	Derivation
	Solution:(t)
	CSD: <(t), (t)>
	A Simple Case

	Our Results
	Expectation of CSD:

	Simulation
	Expectation
	Variance
	OU Process

	Summary

