Derivation and numerical solution of SDE in Neuroscience

Diana Morales¹, Bingyue Su¹, Renjun Zhu¹

May 2, 2019

Morales, Su, Zhu Derivation and numerical solution of SDE in Neuroscience

Table of Contents

- Introduction
 - Background
 - Some Definitions:
- 2 Derivation
 - Solution: $\vec{y}(t)$
 - CSD: $< \vec{y}(t), \vec{y}(t) >$
 - A Simple Case
- 3 Our Results
 - Expectation of CSD:
- ④ Simulation
 - Expectation
 - Variance
 - OU Process
 - 5 Summary

Background Some Definitions

Background

• We study Modelling of Neuroscience problems. Consider the model as: $\tau \cdot \frac{d\vec{y}}{dx} = -\vec{y} + J\vec{y} + \vec{x}$

伺 ト イヨ ト イヨト

э

Background Some Definitions

Background

- We study Modelling of Neuroscience problems. Consider the model as: $\tau \cdot \frac{d\bar{y}}{dx} = -\vec{y} + J\vec{y} + \vec{x}$
 - Where $\vec{y}(t)$ is a vector of neurons' "activity" (i.e. firing rates).
 - and $\vec{x}(t)$ is a vector of neurons' external synaptic inputs from outside the local network.
 - J is an N by N matrix representing synaptic weights and the time-course of synaptic filters.
 - τ is a constant.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Background Some Definitions

Background

- We study Modelling of Neuroscience problems. Consider the model as: $\tau \cdot \frac{d\bar{y}}{dx} = -\vec{y} + J\vec{y} + \vec{x}$
 - Where $\vec{y}(t)$ is a vector of neurons' "activity" (i.e. firing rates).
 - and $\vec{x}(t)$ is a vector of neurons' external synaptic inputs from outside the local network.
 - J is an N by N matrix representing synaptic weights and the time-course of synaptic filters.
 - τ is a constant.
- Goal: find the solution of y

 (t) and study the Cross-Special Density between two stationary processes, denote as
 < x
 (t), y
 (t) >.

Background Some Definitions:

Some Definition:

Stationarity: A process $\vec{x}(t)$ is stationary if its statistics are invariant to time translation. i.e. $\vec{x}(t)$ has the same statistics as $\vec{y}(t) = \vec{x}(t - t_0)$

伺 ト イヨ ト イヨト

Background Some Definitions:

Some Definition:

Stationarity: A process $\vec{x}(t)$ is stationary if its statistics are invariant to time translation. i.e. $\vec{x}(t)$ has the same statistics as $\vec{y}(t) = \vec{x}(t - t_0)$

Statistics: In this project, we are interested in statistics like mean and variance. Defined $\overline{\vec{x}} = \mathbb{E}[\vec{x}(t)]$ to be the mean of a stationary process $\vec{x}(t)$, and this does not depend on t.

伺 ト イ ヨ ト イ ヨ ト

Background Some Definitions:

Some Definition:

Stationarity: A process $\vec{x}(t)$ is stationary if its statistics are invariant to time translation. i.e. $\vec{x}(t)$ has the same statistics as $\vec{y}(t) = \vec{x}(t - t_0)$

Statistics: In this project, we are interested in statistics like mean and variance. Defined $\overline{\vec{x}} = \mathbb{E}[\vec{x}(t)]$ to be the mean of a stationary process $\vec{x}(t)$, and this does not depend on t.

Cross-Covairance: For two stationary processe, define $C_{xy}(\tau) = cov(\vec{x}(t), \vec{y}(t+\tau)) = \mathbb{E}[\vec{x}(t)\vec{y}(t+\tau)] - \vec{x} \cdot \vec{y}$ to be their cross-covariance function. Note: auto-covariance function...

・ 同 ト ・ ヨ ト ・ ヨ ト …

Background Some Definitions:

Some Definition:

Stationarity: A process $\vec{x}(t)$ is stationary if its statistics are invariant to time translation. i.e. $\vec{x}(t)$ has the same statistics as $\vec{y}(t) = \vec{x}(t - t_0)$

Statistics: In this project, we are interested in statistics like mean and variance. Defined $\overline{\vec{x}} = \mathbb{E}[\vec{x}(t)]$ to be the mean of a stationary process $\vec{x}(t)$, and this does not depend on t.

Cross-Covairance: For two stationary processe, define $C_{xy}(\tau) = cov(\vec{x}(t), \vec{y}(t+\tau)) = \mathbb{E}[\vec{x}(t)\vec{y}(t+\tau)] - \overline{\vec{x}} \cdot \overline{\vec{y}}$ to be their cross-covariance function. Note: auto-covariance function...

Cross-spectral density(CSD): The CSD between two stationary processes is the Fourier Transform of their cross-covariance function. i.e. $\langle \vec{x}(t), \vec{y}(t) \rangle (f) = \widetilde{C_{xy}}(f)$.

Solution: $\vec{y}(t)$ CSD: $\langle \vec{y}(t), \vec{y}(t) \rangle$ A Simple Case

Solution of the Model: $\tau \cdot \frac{d\vec{y}}{dt} = -\vec{y} + J\vec{y} + \vec{x}$

Solution in terms of Convolution: $\vec{y}(t) = A * (J\vec{y}(t) + \vec{x}(t))$.

- A is a matrix kernel-matrix only contains diagonal entries such as $a(t) = \frac{1}{\tau}e^{-t/\tau}H(t)$.
- H(t) is the Heaviside step function
- J is a random square matrix with size N.

Each component satisfies $\vec{y}_j(t) = a * (J\vec{y}_j(t) + \vec{x}_j(t))$. For **Stationrity**, we need to assume J - Id with $\text{Re}\{\lambda\} < 0$.

・ 戸 ト ・ ヨ ト ・ ヨ ト

Solution: $\vec{y}(t)$ CSD: $< \vec{y}(t), \vec{y}(t) >$ A Simple Case

$$\mathsf{CSD}: < \vec{y}(t), \vec{y}(t) >$$

CSD of the Model: $\tau \cdot \frac{d\vec{y}}{dx} = -\vec{y} + J\vec{y} + \vec{x}$

Given
$$\vec{y}(t) = A * (J\vec{y}(t) + \vec{x}(t));$$

Then,

$$\langle \vec{y}, \vec{y} \rangle = \langle A * (J\vec{y} + \vec{x}), A * (J\vec{y} + \vec{x}) \rangle$$

= ...
= $(\tilde{A}^{-1} - J)^{-1} \langle \vec{x}, \vec{x} \rangle (\tilde{A}^{-1} - J)^{-*}$

Properties: Let K(t) be a time-dependent matrix, we called it a matrix kernel:

$$\langle K * \vec{x}, \vec{y} \rangle = \tilde{K} \langle \vec{x}, \vec{y} \rangle$$

 $\langle \vec{x}, K * \vec{y} \rangle = \langle \vec{x}, \vec{y} \rangle \tilde{K}^*$, where \tilde{K}^* is the conjugate-transpose.

Solution: $\vec{y}(t)$ CSD: $\langle \vec{y}(t), \vec{y}(t) \rangle$ A Simple Case

Solution of a Very Simple Case in 1-D: y(t)

Solution of the Model: $\tau \cdot \frac{dy}{dt} = -y + x$

Solution in terms of Convolution: y(t) = a * x(t).

$$\mathsf{RHS} = -y(t) + x(t) = -\int_{-\infty}^{\infty} x(s) \cdot a(t-s)ds + x(t)$$

$$LHS = \tau \cdot \frac{dy}{dt} = \int_{-\infty}^{\infty} x(s) \cdot \frac{-1}{\tau} e^{\frac{-(t-s)}{\tau}} H(t-s) ds$$

+
$$\int_{-\infty}^{\infty} x(s) \cdot e^{\frac{-(t-s)}{\tau}} \delta(t-s) ds$$

=
$$\int_{-\infty}^{\infty} -x(s) \cdot a(t-s) ds + x(t)$$

=
$$-y(t) + x(t)$$

=
$$RHS$$

Morales, Su, Zhu Derivation and numerical solution of SDE in Neuroscience

Solution: $\vec{y}(t)$ CSD: $\langle \vec{y}(t), \vec{y}(t) \rangle$ A Simple Case

CSD of the Model: $\tau \cdot \frac{d\bar{y}}{dt} = -y + x$

Given
$$y(t) = a * x(t)$$
;

Then,

$$\langle y, y \rangle = \langle a * x(t), a * x(t) \rangle (f)$$

= $\tilde{a} \langle x(t), x(t) \rangle \tilde{a}^{*}(f)$

since $a(t) = \frac{1}{\tau}e^{-t/\tau}H(t)$, we have $\tilde{a}(f) = \frac{1}{1+2\pi i f \tau}$. Often time, we are interested in lower-frequency CSD, i.e. f = 0, so $\tilde{a}(0) = 1$.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Expectation of CSD:

Statistics of the $E[\langle \vec{y}, \vec{y} \rangle]$

Write $\langle \vec{x}, \vec{x} \rangle$ in terms of $\langle \vec{y}, \vec{y} \rangle$ since we know how to compute the average of $\langle \vec{x}, \vec{x} \rangle$:

$$\langle \vec{x}, \vec{x} \rangle = (\hat{A}^{-1} - J) \langle \vec{y}, \vec{y} \rangle (\hat{A}^{-1} - J)^*$$

= $(\hat{A}^{-1} - J) \langle \vec{y}, \vec{y} \rangle (\hat{A}^{-*} - J^*)$

Expectation of CSD:

Statistics of the $E[\langle \vec{y}, \vec{y} \rangle]$

Write $\langle \vec{x}, \vec{x} \rangle$ in terms of $\langle \vec{y}, \vec{y} \rangle$ since we know how to compute the average of $\langle \vec{x}, \vec{x} \rangle$:

$$\langle \vec{x}, \vec{x} \rangle = (\hat{A}^{-1} - J) \langle \vec{y}, \vec{y} \rangle (\hat{A}^{-1} - J)^*$$

= $(\hat{A}^{-1} - J) \langle \vec{y}, \vec{y} \rangle (\hat{A}^{-*} - J^*)$

$$\begin{split} \mathbb{E}[\langle \vec{x}, \vec{x} \rangle] &= \hat{A}^{-1} \mathbb{E}[\langle \vec{y}, \vec{y} \rangle] \hat{A}^{-*} \\ &- \hat{A}^{-1} \cdot \mathbb{E}[\langle \vec{y}, \vec{y} \rangle] \hat{A}^{-*} \\ &- \mathbb{E}[J \cdot \langle \vec{y}, \vec{y} \rangle] \hat{A}^{-*} \\ &+ \mathbb{E}[J \langle \vec{y}, \vec{y} \rangle]^{*} \end{split}$$

Expectation of CSD:

Statistics of the $E[\langle \vec{y}, \vec{y} \rangle]$

Write $\langle \vec{x}, \vec{x} \rangle$ in terms of $\langle \vec{y}, \vec{y} \rangle$ since we know how to compute the average of $\langle \vec{x}, \vec{x} \rangle$:

$$\langle \vec{x}, \vec{x} \rangle = (\hat{A}^{-1} - J) \langle \vec{y}, \vec{y} \rangle (\hat{A}^{-1} - J)^*$$

= $(\hat{A}^{-1} - J) \langle \vec{y}, \vec{y} \rangle (\hat{A}^{-*} - J^*)$

$$\mathbb{E}[\langle \vec{x}, \vec{x} \rangle] = \hat{A}^{-1} \mathbb{E}[\langle \vec{y}, \vec{y} \rangle] \hat{A}^{-*} - \hat{A}^{-1} \cdot \mathbb{E}[\langle \vec{y}, \vec{y} \rangle] \hat{A}^{-*} - \mathbb{E}[J \cdot \langle \vec{y}, \vec{y} \rangle] \hat{A}^{-*} + \mathbb{E}[J \langle \vec{y}, \vec{y} \rangle] \hat{A}^{-*}$$

GOAL: We need to figure out $\mathbb{E}[\langle \vec{y}, \vec{y} \rangle J^*]$, $\mathbb{E}[J \langle \vec{y}, \vec{y} \rangle]$, and $\mathbb{E}[J \langle \vec{y}, \vec{y} \rangle J^*]$.

Expectation of CSD:

Solving for the Expectations

For the expectation of a matrix, we only need to figure out each entry of a matrix $[.]_{jk}$.

4 B 6 4 B

Expectation of CSD:

Solving for the Expectations

For the expectation of a matrix, we only need to figure out each entry of a matrix $[.]_{jk}$.

$$\begin{split} \mathbb{E}[\langle \vec{x}, \vec{x} \rangle]_{jk} &= \hat{A}_{jj}^{-1} \mathbb{E}[\langle \vec{y}, \vec{y} \rangle]_{jk} \hat{A}_{kk}^{-*} \\ &- \hat{A}_{jj}^{-1} \cdot \mathbb{E}[\langle \vec{y}, \vec{y} \rangle J^*]_{jk} \\ &- \mathbb{E}[J \cdot \langle \vec{y}, \vec{y} \rangle]_{jk} \hat{A}_{jk}^{-*} \\ &+ \mathbb{E}[J \langle \vec{y}, \vec{y} \rangle J^*]_{jk} \end{split}$$

• • = • • = •

Expectation of CSD:

Solving for the Expectations

$$\begin{split} & \mathbb{E}[\langle \vec{y}, \vec{y} > J^*]_{jk} = \mathbb{E}[\langle \vec{y}, J\vec{y} \rangle]_{jk} \approx (N-1) \cdot \overline{\langle \vec{y}, \vec{y} \rangle} \cdot \overline{J^*} + \overline{\{\vec{y}, \vec{y}\}} \cdot \overline{J^*} \\ & \mathbb{E}[J \cdot \langle \vec{y}, \vec{y} \rangle]_{jk} = \mathbb{E}[\langle J\vec{y}, \vec{y} \rangle]_{jk} \approx (N-1) \cdot \overline{J \cdot \langle \vec{y}, \vec{y} \rangle} + \overline{J} \cdot \overline{\{\vec{y}, \vec{y}\}} \end{split}$$

$$\begin{split} \mathbb{E} \big[J < \vec{y}, \vec{y} > J^* \big]_{jk} &= \mathbb{E} \big[< J\vec{y}, J\vec{y} > \big]_{jk} \\ &\approx (N^2 - N) \cdot \overline{J} \cdot \overline{<\vec{y}, \vec{y} >} \cdot \overline{J^*} + N \cdot \overline{J} \cdot \overline{\{\vec{y}, \vec{y}\}} \cdot \overline{J^*} \end{split}$$

Let us consider an Erdos-Renyi network, where J is defined as:

$$J_{jk} = \begin{cases} \frac{j_0}{\sqrt{N}} & \text{with probability } p \\ 0 & \text{otherwise} \end{cases}$$

This represents randomly connected "inhibitory" or "negative" interactions in the network.

Expectation of CSD:

~ ~

• • = • • = •

Solving for the Expectations

As $N \to \infty$, this becomes:

$$\overline{\langle \vec{x}, \vec{x} \rangle} = \overline{\langle \vec{y}, \vec{y} \rangle} \Big[1 - 2(N-1) \cdot \frac{pj_0}{\sqrt{N}} + (N^2 - N) \cdot \frac{p^2 j_0^2}{N} \Big] \\ - \overline{\{\vec{y}, \vec{y}\}} \Big[2 \cdot \frac{pj_0}{\sqrt{N}} - p^2 j_0^2 \Big]$$

Expectation of CSD:

Solving for the Expectations

As $N \to \infty$, this becomes:

$$\overline{\langle \vec{x}, \vec{x} \rangle} = \overline{\langle \vec{y}, \vec{y} \rangle} \Big[1 - 2(N-1) \cdot \frac{pj_0}{\sqrt{N}} + (N^2 - N) \cdot \frac{p^2 j_0^2}{N} \Big] \\ - \overline{\{\vec{y}, \vec{y}\}} \Big[2 \cdot \frac{pj_0}{\sqrt{N}} - p^2 j_0^2 \Big]$$

Now, we follow the same process to the diagonal part of $\mathbb{E}[\langle \vec{x}, \vec{x} \rangle]$, $\mathbb{E}[\langle \vec{x}, \vec{x} \rangle]_{jj}$. After simplifying:

Expectation of CSD:

Solving for the Expectations

As $N \to \infty$, this becomes:

$$\overline{\langle \vec{x}, \vec{x} \rangle} = \overline{\langle \vec{y}, \vec{y} \rangle} \Big[1 - 2(N-1) \cdot \frac{pj_0}{\sqrt{N}} + (N^2 - N) \cdot \frac{p^2 j_0^2}{N} \Big] \\ - \overline{\{\vec{y}, \vec{y}\}} \Big[2 \cdot \frac{pj_0}{\sqrt{N}} - p^2 j_0^2 \Big]$$

Now, we follow the same process to the diagonal part of $\mathbb{E}[\langle \vec{x}, \vec{x} \rangle]$, $\mathbb{E}[\langle \vec{x}, \vec{x} \rangle]_{jj}$. After simplifying:

$$\overline{\{\vec{x},\vec{x}\}} = \overline{\{\vec{y},\vec{y}\}} \begin{bmatrix} 1 - 2 \cdot \frac{pj_0}{\sqrt{N}} + p^2 j_0^2 \end{bmatrix}$$
$$- \overline{\langle \vec{y},\vec{y} \rangle} \begin{bmatrix} 2(N-1) \cdot \frac{pj_0}{\sqrt{N}} - (N^2 - N) \cdot \frac{p^2 j_0^2}{N} \end{bmatrix}$$

Expectation of CSD:

Solving for the Expectations

To see the long-term behaviour, we use \mathcal{O} and o notation,

$$\begin{cases} \overline{\langle \vec{x}, \vec{x} \rangle} = \overline{\langle \vec{y}, \vec{y} \rangle} \cdot N(p^2 j_o^2) + o(N) - \overline{\{\vec{y}, \vec{y}\}} \cdot (-p^2 j_o^2) + o(1) \\ \overline{\{\vec{x}, \vec{x}\}} = \overline{\{\vec{y}, \vec{y}\}} \cdot (1 + p^2 j_o^2) + o(1) - \overline{\langle \vec{y}, \vec{y} \rangle} \cdot N(-p^2 j_o^2) + o(N) \end{cases}$$

Hence,
$$\overline{\langle \vec{y}, \vec{y} \rangle} = -\frac{\overline{\{\vec{y}, \vec{y}\}}}{N} + \frac{\overline{\langle \vec{x}, \vec{x} \rangle}}{p^2 j_0^2 N} + o(\frac{1}{N}),$$

So we need to find a *C* according to $\overline{\{\vec{y}, \vec{y}\}}$ and $\overline{\langle \vec{x}, \vec{x} \rangle}$ such that $\overline{\langle \vec{y}, \vec{y} \rangle} = \frac{C}{N} + o(\frac{1}{N}) \approx \mathcal{O}(\frac{1}{N})$

Expectation of CSD:

Identity Case: $\langle \vec{x}, \vec{x} \rangle = I_n$

With the identity case, only the diagonal contributes. So, $\overline{\langle \vec{x}, \vec{x} \rangle} = 0$ and $\overline{\{\vec{x}, \vec{x}\}} = 1$.

$$\begin{cases} 0 = \overline{\langle \vec{y}, \vec{y} \rangle} \cdot N(p^2 j_o^2) + o(N) + \overline{\{\vec{y}, \vec{y}\}} \cdot (p^2 j_o^2) + o(1) \\ 1 = \overline{\{\vec{y}, \vec{y}\}} \cdot (1 + p^2 j_o^2) + o(1) + \overline{\langle \vec{y}, \vec{y} \rangle} \cdot N(p^2 j_o^2) + o(N) \end{cases}$$

Then $\overline{\{\vec{y}, \vec{y}\}} = 1$; together with $\overline{\langle \vec{x}, \vec{x} \rangle} = 0$, we have C = -1. We expect $\overline{\langle \vec{y}, \vec{y} \rangle} = -\frac{1}{N} + o(\frac{1}{N})$

• • = • • = •

Expectation of CSD:

$\langle \vec{x}, \vec{x} \rangle \sim \mathcal{N}(\mu, \sigma)$ with Fixed Parameters

Since for each entry of $\langle \vec{x}, \vec{x} \rangle$ has expectation μ , we have $\overline{\langle \vec{x}, \vec{x} \rangle} = \overline{\{\vec{x}, \vec{x}\}} = \mu$.

$$\begin{cases} \mu = \overline{\langle \vec{y}, \vec{y} \rangle} \cdot N(p^2 j_o^2) + o(N) + \overline{\{\vec{y}, \vec{y}\}} \cdot (p^2 j_o^2) + o(1) \\ \mu = \overline{\{\vec{y}, \vec{y}\}} \cdot (1 + p^2 j_o^2) + o(1) + \overline{\langle \vec{y}, \vec{y} \rangle} \cdot N(p^2 j_o^2) + o(N) \end{cases}$$

then $\overline{\{\vec{y}, \vec{y}\}} = 0$, so $C = \frac{\mu}{p^2 j_0^2}$. We expect $\overline{\langle \vec{y}, \vec{y} \rangle} = \frac{C}{N} + o(\frac{1}{N}) = \frac{\mu}{p^2 j_0^2 \cdot N} + o(\frac{1}{N})$

Expectation of CSD:

 $\langle \vec{x}, \vec{x} \rangle \sim \mathcal{N}(N\mu, \sqrt{N}\sigma)$ with Non-Fixed Parameters

Since for each entry of $\langle \vec{x}, \vec{x} \rangle$ has expectation $N\mu$, comparing with the one with fixed-parameters, C would be $\frac{\mu}{p^2/c^2} \cdot N$.

$$\langle \vec{y}, \vec{y} \rangle = \frac{\mu}{p^2 j_0^2} + o(1)$$

Expectation Variance OU Process

Identity Case

Expectation Variance OU Process

Normal Case With Fixed Parameters

Expectation Variance OU Process

Normal Case With Non-fixed Parameters

Expectation Variance OU Process

Identity Case

Expectation Variance OU Process

Normal Case

Morales, Su, Zhu Derivation and numerical solution of SDE in Neuroscience

▶ ∢ ≣

-

Expectation Variance OU Process

Numerically Simulate SDE:

 $\frac{d\bar{y}}{dt} = F(\bar{y}, t) + G(\bar{y}, t) \frac{d\bar{W}}{dt}, \text{ where } \vec{W}(t) \in \mathbb{R}^m \text{ is an m-dimensional}$ Winer process, and $G : \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}^{n \times m}$

A 3 b

Expectation Variance OU Process

Numerically Simulate SDE:

 $\frac{d\bar{y}}{dt} = F(\vec{y}, t) + G(\vec{y}, t) \frac{d\bar{W}}{dt}, \text{ where } \vec{W}(t) \in \mathbb{R}^m \text{ is an m-dimensional}$ Winer process, and $G : \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}^{n \times m}$

In our model, it would be: $\vec{y}_{i+1} = \vec{y}_i + (J-I)\vec{y}_i \cdot dt + dw$, where $dW \sim \mathcal{N}(0, \sqrt{dt})$, i is the steps that we partition on .

Expectation Variance OU Process

Numerically Simulate SDE:

 $\frac{d\bar{y}}{dt} = F(\vec{y}, t) + G(\vec{y}, t) \frac{d\bar{W}}{dt}, \text{ where } \vec{W}(t) \in \mathbb{R}^m \text{ is an m-dimensional}$ Winer process, and $G : \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}^{n \times m}$

In our model, it would be: $\vec{y}_{i+1} = \vec{y}_i + (J-I)\vec{y}_i \cdot dt + dw$, where $dW \sim \mathcal{N}(0, \sqrt{dt})$, i is the steps that we partition on .

By Fourier transfer, I can get $\lim_{\tau_0 \to \infty} \frac{cov(N_{yj}(\tau_0), N_{y_k}(\tau_0))}{\tau_0} = \langle y_j, y_k \rangle$

Expectation Variance OU Process

Numerically Simulate SDE:

 $\frac{d\bar{y}}{dt} = F(\vec{y}, t) + G(\vec{y}, t) \frac{d\bar{W}}{dt}, \text{ where } \vec{W}(t) \in \mathbb{R}^m \text{ is an m-dimensional}$ Winer process, and $G : \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}^{n \times m}$

In our model, it would be: $\vec{y}_{i+1} = \vec{y}_i + (J-I)\vec{y}_i \cdot dt + dw$, where $dW \sim \mathcal{N}(0, \sqrt{dt})$, i is the steps that we partition on .

By Fourier transfer, I can get $\lim_{\tau_0 \to \infty} \frac{cov(N_{yj}(\tau_0), N_{y_k}(\tau_0))}{\tau_0} = \langle y_j, y_k \rangle$ In simulation, I can choose a large τ_0 to estimate $\mathbb{E}[\langle y_j, y_k \rangle]$: $\frac{cov(N_{y_j}(\tau_0), N_{y_k}(\tau_0))}{\tau_0} \approx \langle y_j, y_k \rangle$

イロト イポト イラト イラト

Expectation Variance OU Process

Numerically Simulate SDE:

Morales, Su, Zhu Derivation and numerical solution of SDE in Neuroscience

In Summary:

Our Neuroscience Model:

$$\tau \cdot \frac{d\vec{y}}{dt} = -\vec{y} + J\vec{y} + \vec{x}$$

3 Solution:
$$\vec{y}(t) = A * (J\vec{y}(t) + \vec{x}(t)).$$

Oross-Spectral Density:

$$\langle \vec{y}, \vec{y} \rangle = (\tilde{A}^{-1} - J)^{-1} \langle \vec{x}, \vec{x} \rangle (\tilde{A}^{-1} - J)^{-*}$$

$$\mathbb{E}[\langle \vec{y}, \vec{y} \rangle] := \overline{\langle \vec{y}, \vec{y} \rangle} = -\frac{\overline{\langle \vec{y}, \vec{y} \rangle}}{N} + \frac{\overline{\langle \vec{x}, \vec{x} \rangle}}{p^2 j_0^2 N} + o(\frac{1}{N})$$

• if
$$\langle \vec{x}, \vec{x} \rangle = I$$
, then $\overline{\langle \vec{y}, \vec{y} \rangle} \sim \mathcal{O}(\frac{1}{N})$.

• if
$$\langle \vec{x}, \vec{x} \rangle \sim \mathcal{N}(\mu, \sigma^2)$$
, then $\overline{\langle \vec{y}, \vec{y} \rangle} \sim \mathcal{O}(\frac{1}{N})$.

• if
$$\langle \vec{x}, \vec{x} \rangle \sim \mathcal{N}(N\mu, \sqrt{N\sigma^2})$$
, then $\overline{\langle \vec{y}, \vec{y} \rangle} \sim \mathcal{O}(1)$.

Simulations confirms the Theoretical Derivations. ©

Investigate on Variance and OU-Process.

Future Work: Derive Theoretical Variance and other Statistics.

Any Questions ??

Thank You 🙂

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

- D. Dahmen, S. Grun, M. Diesmann, and M. Helias, *Two Types of Criticality in the brain*, (2017).
- C. Baker, C. Ebsch, I. Lampl, and R. Rosenbaum The correlated state om balanced neronal networks, (2019).

4 3 b