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@ We study Modelling of Neuroscience problems. Consider the

model as: T - dy:—y+Jy+x
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Background
Some Definitions

Background

@ We study Modelling of Neuroscience problems. Consider the

model as: T - dy:—y+Jy+x

Where y(t) is a vector of neurons’ "activity”(i.e. firing rates).
and x(t) is a vector of neurons’ external synaptic inputs from
outside the local network.

Jis an N by N matrix representing synaptic weights and the
time-course of synaptic filters.

e T is a constant.
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Introduction

Background
Some Definitions

Background

@ We study Modelling of Neuroscience problems. Consider the
dy _

model as: 7- = =-y+Jy+X
o Where y(t) is a vector of neurons’ "activity”(i.e. firing rates).
e and X(t) is a vector of neurons’ external synaptic inputs from
outside the local network.
e Jis an N by N matrix representing synaptic weights and the
time-course of synaptic filters.
e T is a constant.

e Goal: find the solution of y(t) and study the Cross-Special
Density between two stationary processes, denote as

<x(t),y(t) >.
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Some Definition:

Stationarity: A process X(t) is stationary if its statistics are
invariant to time translation. i.e. X(t) has the same statistics as

y(t) =X(t - to)
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Background
Some Definitions:

Some Definition:

Stationarity: A process X(t) is stationary if its statistics are
invariant to time translation. i.e. X(t) has the same statistics as
y(t) = x(t-to)

Statistics: In this project, we are interested in statistics like mean

and variance. Defined X = E[X(t)] to be the mean of a stationary
process x(t), and this does not depend on t.
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Background
Some Definitions:

Some Definition:

Stationarity: A process X(t) is stationary if its statistics are
invariant to time translation. i.e. X(t) has the same statistics as

y(t) =x(t - to)
Statistics: In this project, we are interested in statistics like mean

and variance. Defined X = E[X(t)] to be the mean of a stationary
process x(t), and this does not depend on t.

Cross-Covairance: For two stationary processe, define
Coy (1) = cov(x(t),y(t+7)) =E[x(t)y(t+7)] - Xy to be their
cross-covariance function. Note: auto-covariance function...
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Introduction

Background
Some Definitions:

Some Definition:

Stationarity: A process X(t) is stationary if its statistics are
invariant to time translation. i.e. X(t) has the same statistics as

y(t) =x(t - to)
Statistics: In this project, we are interested in statistics like mean

and variance. Defined X = E[X(t)] to be the mean of a stationary
process x(t), and this does not depend on t.

Cross-Covairance: For two stationary processe, define

Coy (7) = cov(%(t),y(t +7)) = E[X(t)y(t +T)] = X - y to be their
cross-covariance function. Note: auto-covariance function...
Cross-spectral density(CSD): The CSD between two stationary
processes is the Fourier Transform of their cross-covariance
function. i.e. < x(t),y(t) > (f) = Gy (f).
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Derivation Solution:y(t)
CSD y(t),y(t) >
A Simple Case

Solution: y(t)

Solution of the Model: 7 - % =—-y+Jy+x

Solution in terms of Convolution: y(t) = A* (Jy(t) + xX(t)).

@ A is a matrix kernel-matrix only contains diagonal entries such
as a(t) = %e‘t/TH(t).
@ H(t) is the Heaviside step function

@ J is a random square matrix with size N.

Each component satisfies y;(t) = a * (Jy;(t) + Xj(t)).
For Stationrity, we need to assume J — Id with Re{\} < 0.
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Derivation Solution:y(t)
CSD: < y(t),y(t) >
A Simple Case

CSD: < y(t),y(t) >

CSD of the Model: d—y:—y+Jy+x

Given y(t) = Ax (Jy(t) +X(t));
Then,

v,y <Ax(Jy+%),A*(Jy+X)>

A
=
<
v
I

ANz x>(AT -

Properties: Let K(t) be a time-dependent matrix, we called it a
matrix kernel:

<K *X,y>= K <x Y >

<%, K *y>=<x,y>K* where K* is the conjugate-transpose.
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Derivation Solution:y (t)
CSD: < y(t), y(t) >
A Simple Case

Solution of a Very Simple Case in 1-D: y(t)

Solution of the Model: 7 - ‘jjt’ =-y+x

Solution in terms of Convolution: y(t) = a* x(t).

RHS = —y(t) +x(t) = - [ x(s)-a(t—s)ds +x(t)

d o0 -1 (=9
LHS =7- % f x(s)-—e = H(t-s)ds
dt —00 7'

[:x(s) e - 5(t—s)ds
[ “x(s) - a(t - s)ds + x(t)

—y () +x(t)
RHS

+
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Derivation Solution:y(t)
CSD: < y(t), y(t) >
A Simple Case

CSD: < y(t),<y(t) >

CSD of the Model: 7 - % =—-y+x

Given y(t) = a* x(t));
Then,

<y,y> = <axx(t),axx(t)>(f)
a<x(t),x(t)>3a"(f)

since a(t) = %e‘t/TH(t), we have 3(f) = ﬁ Often time, we
are interested in lower-frequency CSD, i.e. f =0, so 3(0) = 1.
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Our Results Expectation of CSD:

Statistics of the E[< y,y >]

Write < X, X > in terms of < y, ¥ > since we know how to compute
the average of < X, X >:

<x,x> = (AN <y, y>(At-0)"
(A =0 <y,7> (A" =J")
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Our Results Expectation of CSD:

Statistics of the E[< y,y >]

Write < X, X > in terms of < y, ¥ > since we know how to compute
the average of < X, X >:

<x,x> = (AN <y, y>(At-0)"
(A =D) <y, 5> (A" =)

E[<x,x>] = Al'E[<y,y>
AT K[
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Our Results Expectation of CSD:

Statistics of the E[< y,y >]

Write < X, X > in terms of < y, ¥ > since we know how to compute
the average of < X, X >:
<x,x> = (AN <y, y>(At-0)"
= (A=) <y y> (AT -0

E[<x,x>] = AlE[<y,y>]A"
- ATE[<y,y> )]
- E[J<y,y>]A
+ E[J<y,y>J"]
GOAL: We need to figure out E[< y,y > J*], E[J<y,y >], and

E[J<y,y>J*].
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Our Results Expectation of CSD:

Solving for the Expectations

For the expectation of a matrix, we only need to figure out each
entry of a matrix [.]j.
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Our Results Expectation of CSD:

Solving for the Expectations

For the expectation of a matrix, we only need to figure out each
entry of a matrix [.]j.

]
— E[J<7,7 >]uAu
+ ElJ<y,y>J i
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Our Results Expectation of CSD:

Solving for the Expectations

>J ]Jk_ [<y,J}/>Lk~(N 1) <_y y> J* {}75/’ F
>

Ik =E[<Jy,y>lu~(N-1)-J-<y,y>+J-{y,y}

E[J<}77}7>J*]jk E[< Jy/wjy/ >]jk

(N>-N)-J-<y,y>-J*+N-J-{y,y}-J*

R

Let us consider an Erdos-Renyi network, where J is defined as:

VN

o with probability p
Iy = .
0 otherwise

This represents randomly connected "inhibitory” or "negative”
interactions in the network.

Morales, Su, Zhu Derivation and numerical solution of SDE in Neuroscience



Our Results Expectation of CSD:

Solving for the Expectations

As N — oo, this becomes:

2.2
SRR = yS[1-2(N-1)- \I;JON+(N2—N).%]

.12 5% i3]
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Our Results Expectation of CSD:

Solving for the Expectations

As N — oo, this becomes:

2.2
SRR = yS[1-2(N-1)- \I;JON+(N2—N).%]

.12 5% i3]

Now, we follow the same process to the diagonal part of
E[< X,X >], E[< X,x >]j;. After simplifying:
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Our Results Expectation of CSD:

Solving for the Expectations

As N — oo, this becomes:

- es - pjo p2j2
<X,X> = y>[1-2(N-1)- \/NJF(NZ_N)'TO]
- G2 5% P2

Now, we follow the same process to the diagonal part of
E[< X,X >], E[< X,x >]j;. After simplifying:

Gox) = Goli-2 222

VN

- Gy s[2N-1)- jfi (N2 = N)- ’”0]
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Our Results Expectation of CSD:

Solving for the Expectations

To see the long-term behaviour, we use O and o notation,

{<xx> <3,y > N(p?j2) + o(N) - {7,¥} - (=pj2) + o(1)
%y = (7.9} - (1+p22) + o(1) <3,y > - N(=p*2) + o( N)

Hence, < y,y > = _{?NY} <x S >, o( )

So we need to find a C according to {y,y} and < X, X > such that
<3,y >=f+o(7) ~ O(F)
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Our Results Expectation of CSD:

|dentity Case: < x,x >= 1,

With the identity case, only the diagonal contributes.
So, <X,x>=0and {x,x} =1.

{o <.y > N(p%2) + o(N) + {y,y} - (p%2) + o(1)
1={y.y} (1+p%2) +0(1) +<y,y > N(p?2) + o(N)

Then {y,y} = 1; together with < X, x > =0, we have C = -1.
We expect < y,y > = —% + o(%)
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Our Results Expectation of CSD:

< X,%x >~ N (u,0) with Fixed Parameters

Since for each entry of < X, X > has expectation u, we have
<X, X >={X,X} = p.

{M‘—<)7 .7 > N(p2j2) + o(N) + 7,7} - (P%j2) + o(1)
p={75}- (14 p32) +0(1) + <7,y > N(p*2) + o(N)

To o _ B
then {y,y} =0, so C—pQJ.g.

We expect < y,y > = 5 + o(ﬁ) = p#é.N + o(%)
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Our Results Expectation of CSD:

<X, % >~ N(Nu,v/No) with Non-Fixed Parameters

Since for each entry of < X, X > has expectation Ny, comparing

with the one with fixed-parameters, C would be pQsz - .
0

?—L
<y, y>=gm+o(l)
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Expectation
VELED
Simulation OU Pr

|dentity Case

<X, x >= Iy
. LT = o _ 1 1
Theoretical value: <y,y>=-5 +0(y)
Simulation of E<y,y> Vs. -1/N

- simulation
- theory
8107 4
>
v
L.
o
°
1073 1
10? 10°

log(N)
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Expectation
\%
Simulation

Normal Case With Fixed Parameters

<X, %>~ N(u,0?):
Theoretical value: <y,y >= % + o(%) = p2j+-N + o(%)
0

E<y.y> with Any fixed-mean Distribution Comparision

—— simulation
- theory

log(E<y.y>)

103
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Expectation

Simulation

Normal Case With Non-fixed Parameters

<X X>~N(N,U,,\/_O'2)
Theoretical value: <y,y >=C+ o( )= 2 27t o(1)

Simulation of E<y,y> Vs. log(t)

0 200 400 600 800 1000 1200 1400

3
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Expectation
Variance
Simulation OU Process

|dentity Case

Simulation of V[<y,y>] Vs. 1/N

102

log(V[<y.y=>])

10° 10°
log(N)
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Expectation
Variance
Simulation OU Process

Normal Case

<%, % >~ N(u,02)orN' (N, /No?):

Simulation of V[<y,y>
Simulation of normal fixed-mean V[<y,y>] [<yy>]
10° { — simulation
—— log(N)
0354
0352 7
- >
3 7 10
7 s
7 0350 2
s g
0348
— Constant
1
0346 — 10 . .
- - - - 2 3
0 200 400 600 800 1000 10 10
N log(N)
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V. e
Simulation OU Process

Numerically Simulate SDE:

% =F(y,t)+G(y,t dd—W, where W(t) € R™ is an m-dimensional
Winer process, and G: R" x R — R™™
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Xxpectation
Variance
Simulation OU Process

Numerically Simulate SDE:

% =F(y,t)+G(y,t dd—W, where W(t) € R™ is an m-dimensional
Winer process, and G: R" x R — R™™

In our model, it would be:
Vis1 = yi + (J= Dy; - dt + dw, where dW ~ N'(0,V/dt), i is the steps
that we partition on .
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Xxpectation
Variance
Simulation OU Process

Numerically Simulate SDE:

% =F(y,t)+G(y,t dd—W, where W(t) € R™ is an m-dimensional
Winer process, and G: R" x R — R™™

In our model, it would be:

Vis1 =yi+ (J=1)y;i-dt + dw, where dW ~ N'(0,\/dt), i is the steps
that we partition on .

cov(Ny;(70),Ny, (70))
e =< Y Yk >

By Fourier transfer, | can get lim; o
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Expectation
Variance
Simulation OU Process

Numerically Simulate SDE:

% =F(y,t)+G(y, t)dd—W, where W(t) € R™ is an m-dimensional
Winer process, and G: R" x R — R™™

In our model, it would be:

Vis1 =yi+ (J=1)y;i-dt + dw, where dW ~ N'(0,\/dt), i is the steps
that we partition on .

. . Ny (7o), N.
By Fourier transfer, | can get lim;, oo cov( ”(733 (1)) _ Vi, Yk >

In simulation, | can choose a large 7 to estimate E[< y;, yx >]:
COV(Nyj(TO)yNyk(TO)) o
T0 ~< .y_]7.yk >
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V. e
Simulation OU Process

Numerically Simulate SDE:

Simulation of OU-process

Y

40 1
A
>
7 35
w
3.0 1
25 = .1/N+C
= simulation
20 40 60 80 100 120 140
N
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Summary

In Summary:

Our Neuroscience Model:

dy o e o
T-F=-y+Iy+X

@ Solution: y(t) = Ax (Jy(t) +Xx(t)).
© Cross-Spectral Density: }
<y, y>=(Al-NHT<xx>(A1-N)"

.yt <xx

@ E[<y,y>]=<y,y>=-Yf + 58+ o(f)

o if <X,x>=1 then <y,y >~ (’)(%)

o if <X,% >~ N(p,0?), then <y, y>~O(5).

o if <X,% >~ N(Nu,v/No?), then <y,y >~ O(1).
@ Simulations confirms the Theoretical Derivations. ©®
© Investigate on Variance and OU-Process.
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Future Work: Derive Theoretical Variance and other Statistics.

Any Questions 77

Thank You ®



Summary
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