Derivation and numerical solution of SDE in Neuroscience

Diana Morales ${ }^{1}$, Bingyue Su ${ }^{1}$, Renjun Zhu ${ }^{1}$

May 2, 2019

Table of Contents

(1) Introduction

- Background
- Some Definitions:
(2) Derivation
- Solution: $\vec{y}(t)$
- CSD: $\langle\vec{y}(t), \vec{y}(t)>$
- A Simple Case
(3) Our Results
- Expectation of CSD:
(4) Simulation
- Expectation
- Variance
- OU Process
(5) Summary

Background

- We study Modelling of Neuroscience problems. Consider the model as: $\tau \cdot \frac{d \vec{y}}{d x}=-\vec{y}+J \vec{y}+\vec{x}$

Background

- We study Modelling of Neuroscience problems. Consider the model as: $\tau \cdot \frac{d \vec{y}}{d x}=-\vec{y}+J \vec{y}+\vec{x}$
- Where $\vec{y}(t)$ is a vector of neurons' "activity"(i.e. firing rates).
- and $\vec{x}(t)$ is a vector of neurons' external synaptic inputs from outside the local network.
- J is an N by N matrix representing synaptic weights and the time-course of synaptic filters.
- τ is a constant.

Background

- We study Modelling of Neuroscience problems. Consider the model as: $\tau \cdot \frac{d \vec{y}}{d x}=-\vec{y}+J \vec{y}+\vec{x}$
- Where $\vec{y}(t)$ is a vector of neurons' "activity"(i.e. firing rates).
- and $\vec{x}(t)$ is a vector of neurons' external synaptic inputs from outside the local network.
- J is an N by N matrix representing synaptic weights and the time-course of synaptic filters.
- τ is a constant.
- Goal: find the solution of $\vec{y}(t)$ and study the Cross-Special Density between two stationary processes, denote as $\langle\vec{x}(t), \vec{y}(t)>$.

Some Definition:

Stationarity: A process $\vec{x}(t)$ is stationary if its statistics are invariant to time translation. i.e. $\vec{x}(t)$ has the same statistics as $\vec{y}(t)=\vec{x}\left(t-t_{0}\right)$

Some Definition:

Stationarity: A process $\vec{x}(t)$ is stationary if its statistics are invariant to time translation. i.e. $\vec{x}(t)$ has the same statistics as $\vec{y}(t)=\vec{x}\left(t-t_{0}\right)$

Statistics: In this project, we are interested in statistics like mean and variance. Defined $\vec{x}=\mathbb{E}[\vec{x}(t)]$ to be the mean of a stationary process $\vec{x}(t)$, and this does not depend on t.

Some Definition:

Stationarity: A process $\vec{x}(t)$ is stationary if its statistics are invariant to time translation. i.e. $\vec{x}(t)$ has the same statistics as $\vec{y}(t)=\vec{x}\left(t-t_{0}\right)$

Statistics: In this project, we are interested in statistics like mean and variance. Defined $\overrightarrow{\vec{x}}=\mathbb{E}[\vec{x}(t)]$ to be the mean of a stationary process $\vec{x}(t)$, and this does not depend on t.
Cross-Covairance: For two stationary processe, define $C_{x y}(\tau)=\operatorname{cov}(\vec{x}(t), \vec{y}(t+\tau))=\mathbb{E}[\vec{x}(t) \vec{y}(t+\tau)]-\overrightarrow{\vec{x}} \cdot \overline{\vec{y}}$ to be their cross-covariance function. Note: auto-covariance function...

Some Definition:

Stationarity: A process $\vec{x}(t)$ is stationary if its statistics are invariant to time translation. i.e. $\vec{x}(t)$ has the same statistics as $\vec{y}(t)=\vec{x}\left(t-t_{0}\right)$

Statistics: In this project, we are interested in statistics like mean and variance. Defined $\overrightarrow{\bar{x}}=\mathbb{E}[\vec{x}(t)]$ to be the mean of a stationary process $\vec{x}(t)$, and this does not depend on t.
Cross-Covairance: For two stationary processe, define $C_{x y}(\tau)=\operatorname{cov}(\vec{x}(t), \vec{y}(t+\tau))=\mathbb{E}[\vec{x}(t) \vec{y}(t+\tau)]-\overrightarrow{\vec{x}} \cdot \overrightarrow{\vec{y}}$ to be their cross-covariance function. Note: auto-covariance function...

Cross-spectral density(CSD): The CSD between two stationary processes is the Fourier Transform of their cross-covariance function. i.e. $\langle\vec{x}(t), \vec{y}(t)\rangle(f)=\widetilde{C_{x y}}(f)$.

Solution: $\vec{y}(t)$

Solution of the Model: $\tau \cdot \frac{d \vec{y}}{d t}=-\vec{y}+J \vec{y}+\vec{x}$
Solution in terms of Convolution: $\vec{y}(t)=A *(J \vec{y}(t)+\vec{x}(t))$.

- A is a matrix kernel-matrix only contains diagonal entries such as $a(t)=\frac{1}{\tau} e^{-t / \tau} H(t)$.
- $\mathrm{H}(\mathrm{t})$ is the Heaviside step function
- J is a random square matrix with size N .

Each component satisfies $\vec{y}_{j}(t)=a *\left(J \vec{y}_{j}(t)+\vec{x}_{j}(t)\right)$. For Stationrity, we need to assume $J-I d$ with $\operatorname{Re}\{\lambda\}<0$.

CSD: $\langle\vec{y}(t), \vec{y}(t)>$

CSD of the Model: $\tau \cdot \frac{d \vec{y}}{d x}=-\vec{y}+J \vec{y}+\vec{x}$

Given $\vec{y}(t)=A *(J \vec{y}(t)+\vec{x}(t))$;
Then,

$$
\begin{aligned}
\langle\vec{y}, \vec{y}\rangle & =\langle A *(J \vec{y}+\vec{x}), A *(J \vec{y}+\vec{x})\rangle \\
& =\ldots \\
& \left.=\left(\tilde{A}^{-1}-J\right)^{-1}<\vec{x}, \vec{x}\right\rangle\left(\tilde{A}^{-1}-J\right)^{-*}
\end{aligned}
$$

Properties: Let $\mathrm{K}(\mathrm{t})$ be a time-dependent matrix, we called it a matrix kernel:
$\langle K * \vec{x}, \vec{y}\rangle=\tilde{K}\langle\vec{x}, \vec{y}\rangle$
$\langle\vec{x}, K * \vec{y}\rangle=\langle\vec{x}, \vec{y}\rangle \tilde{K}^{*}$, where \tilde{K}^{*} is the conjugate-transpose.

Solution of a Very Simple Case in 1-D: $y(t)$

Solution of the Model: $\tau \cdot \frac{d y}{d t}=-y+x$
Solution in terms of Convolution: $y(t)=a * x(t)$.

$$
\begin{aligned}
& \mathrm{RHS}=-y(t)+x(t)= \\
& \begin{aligned}
L H S=\tau \cdot \frac{d y}{d t} & =\int_{-\infty}^{\infty} x(s) \cdot a(t-s) d s+x(t) \\
& +\int_{-\infty}^{\infty} x(s) \cdot e^{\frac{-(t-s)}{\tau}} \delta(t-s) d s \\
& =\int_{-\infty}^{\infty}-x(s) \cdot a(t-s) d s+x(t) \\
& =-y(t)+x(t) \\
& =R H S
\end{aligned}
\end{aligned}
$$

CSD: <y(t),<y(t)>

CSD of the Model: $\tau \cdot \frac{d \vec{y}}{d t}=-y+x$
Given $y(t)=a * x(t))$;
Then,

$$
\begin{aligned}
\langle y, y> & =<a * x(t), a * x(t)>(f) \\
& =\tilde{a}<x(t), x(t)>\tilde{a}^{*}(f)
\end{aligned}
$$

since $a(t)=\frac{1}{\tau} e^{-t / \tau} H(t)$, we have $\tilde{a}(f)=\frac{1}{1+2 \pi i f \tau}$. Often time, we are interested in lower-frequency CSD, i.e. $f=0$, so $\tilde{a}(0)=1$.

Statistics of the $\mathrm{E}[\langle\vec{y}, \vec{y}\rangle]$

Write $\langle\vec{x}, \vec{x}\rangle$ in terms of $\langle\vec{y}, \vec{y}\rangle$ since we know how to compute the average of $\langle\vec{x}, \vec{x}\rangle$:

$$
\begin{aligned}
\langle\vec{x}, \vec{x}> & =\left(\hat{A}^{-1}-J\right)<\vec{y}, \vec{y}>\left(\hat{A}^{-1}-J\right)^{*} \\
& =\left(\hat{A}^{-1}-J\right)<\vec{y}, \vec{y}>\left(\hat{A}^{-*}-J^{*}\right)
\end{aligned}
$$

Statistics of the $\mathrm{E}[\langle\vec{y}, \vec{y}\rangle]$

Write $\langle\vec{x}, \vec{x}\rangle$ in terms of $\langle\vec{y}, \vec{y}\rangle$ since we know how to compute the average of $\langle\vec{x}, \vec{x}\rangle$:

$$
\begin{aligned}
<\vec{x}, \vec{x}> & =\left(\hat{A}^{-1}-J\right)<\vec{y}, \vec{y}>\left(\hat{A}^{-1}-J\right)^{*} \\
& =\left(\hat{A}^{-1}-J\right)<\vec{y}, \vec{y}>\left(\hat{A}^{-*}-J^{*}\right)
\end{aligned}
$$

$$
\mathbb{E}[\langle\vec{x}, \vec{x}\rangle]=\hat{A}^{-1} \mathbb{E}[\langle\vec{y}, \vec{y}\rangle] \hat{A}^{-*}
$$

$$
-\hat{A}^{-1} \cdot \mathbb{E}\left[\left\langle\vec{y}, \vec{y}>J^{*}\right]\right.
$$

$$
-\mathbb{E}[J \cdot\langle\vec{y}, \vec{y}\rangle] \hat{A}^{-*}
$$

$$
+\mathbb{E}\left[J<\vec{y}, \vec{y}>J^{*}\right]
$$

Statistics of the $\mathrm{E}[\langle\vec{y}, \vec{y}\rangle]$

Write $\langle\vec{x}, \vec{x}\rangle$ in terms of $\langle\vec{y}, \vec{y}\rangle$ since we know how to compute the average of $\langle\vec{x}, \vec{x}\rangle$:

$$
\begin{aligned}
\langle\vec{x}, \vec{x}\rangle & =\left(\hat{A}^{-1}-J\right)<\vec{y}, \vec{y}>\left(\hat{A}^{-1}-J\right)^{*} \\
& =\left(\hat{A}^{-1}-J\right)<\vec{y}, \vec{y}>\left(\hat{A}^{-*}-J^{*}\right) \\
\mathbb{E}[<\vec{x}, \vec{x}\rangle] & =\hat{A}^{-1} \mathbb{E}[<\vec{y}, \vec{y}>] \hat{A}^{-*} \\
& -\hat{A}^{-1} \cdot \mathbb{E}\left[<\vec{y}, \vec{y}>J^{*}\right] \\
& -\mathbb{E}[J \cdot<\vec{y}, \vec{y}>] \hat{A}^{-*} \\
& +\mathbb{E}\left[J<\vec{y}, \vec{y}>J^{*}\right]
\end{aligned}
$$

GOAL: We need to figure out $\mathbb{E}\left[\langle\vec{y}, \vec{y}\rangle J^{*}\right], \mathbb{E}[J\langle\vec{y}, \vec{y}\rangle]$, and $\mathbb{E}\left[J<\vec{y}, \vec{y}>J^{*}\right]$.

Solving for the Expectations

For the expectation of a matrix, we only need to figure out each entry of a matrix $[.]_{j k}$.

Solving for the Expectations

For the expectation of a matrix, we only need to figure out each entry of a matrix $[] j$.$k .$

$$
\begin{aligned}
\mathbb{E}[\langle\vec{x}, \vec{x}\rangle]_{j k} & =\hat{A}_{j j}^{-1} \mathbb{E}[<\vec{y}, \vec{y}>]_{j k} \hat{A}_{k k}^{-*} \\
& -\hat{A}_{j j}^{-1} \cdot \mathbb{E}\left[\left\langle\vec{y}, \vec{y}>J^{*}\right]_{j k}\right. \\
& -\mathbb{E}[J \cdot<\vec{y}, \vec{y}>]_{j k} \hat{A}_{j k}^{-*} \\
& +\mathbb{E}\left[J<\vec{y}, \vec{y}>J^{*}\right]_{j k}
\end{aligned}
$$

Solving for the Expectations

$$
\begin{aligned}
& \mathbb{E}\left[\langle\vec{y}, \vec{y}\rangle J^{*}\right]_{j k}=\mathbb{E}[\langle\vec{y}, J \vec{y}\rangle]_{j k} \approx(N-1) \cdot \overline{\langle\vec{y}, \vec{y}\rangle} \cdot \overline{J^{*}}+\overline{\{\vec{y}, \vec{y}\}} \cdot \overline{J^{*}} \\
& \mathbb{E}[J \cdot\langle\vec{y}, \vec{y}\rangle]_{j k}=\mathbb{E}[\langle J \vec{y}, \vec{y}\rangle]_{j k} \approx(N-1) \cdot \bar{J} \cdot \overline{\langle\vec{y}, \vec{y}\rangle}+\bar{J} \cdot \overline{\{\vec{y}, \vec{y}\}} \\
& \begin{aligned}
\mathbb{E}\left[J\langle\vec{y}, \vec{y}\rangle J^{*}\right]_{j k} & =\mathbb{E}[\langle J \vec{y}, J \vec{y}\rangle]_{j k} \\
& \approx\left(N^{2}-N\right) \cdot \vec{J} \cdot\langle\vec{y}, \vec{y}\rangle \cdot \overline{J^{*}}+N \cdot \bar{J} \cdot \overline{\{\vec{y}, \vec{y}\}} \cdot \overline{J^{*}}
\end{aligned}
\end{aligned}
$$

Let us consider an Erdos-Renyi network, where J is defined as:

$$
J_{j k}= \begin{cases}\frac{j_{0}}{\sqrt{N}} & \text { with probability } p \\ 0 & \text { otherwise }\end{cases}
$$

This represents randomly connected "inhibitory" or "negative" interactions in the network.

Solving for the Expectations

As $N \rightarrow \infty$, this becomes:

$$
\begin{aligned}
\overline{\langle\vec{x}, \vec{x}\rangle} & =\overline{\langle\vec{y}, \vec{y}\rangle}\left[1-2(N-1) \cdot \frac{p j_{0}}{\sqrt{N}}+\left(N^{2}-N\right) \cdot \frac{p^{2} j_{0}^{2}}{N}\right] \\
& -\overline{\{\vec{y}, \vec{y}\}}\left[2 \cdot \frac{p j_{0}}{\sqrt{N}}-p^{2} j_{0}^{2}\right]
\end{aligned}
$$

Solving for the Expectations

As $N \rightarrow \infty$, this becomes:

$$
\begin{aligned}
\overline{\langle\vec{x}, \vec{x}\rangle} & =\overline{\langle\vec{y}, \vec{y}\rangle}\left[1-2(N-1) \cdot \frac{p j_{0}}{\sqrt{N}}+\left(N^{2}-N\right) \cdot \frac{p^{2} j_{0}^{2}}{N}\right] \\
& -\overline{\{\vec{y}, \vec{y}\}}\left[2 \cdot \frac{p j_{0}}{\sqrt{N}}-p^{2} j_{0}^{2}\right]
\end{aligned}
$$

Now, we follow the same process to the diagonal part of $\mathbb{E}[\langle\vec{x}, \vec{x}\rangle], \mathbb{E}[\langle\vec{x}, \vec{x}\rangle]_{j j}$. After simplifying:

Solving for the Expectations

As $N \rightarrow \infty$, this becomes:

$$
\begin{aligned}
\overline{\langle\vec{x}, \vec{x}\rangle} & =\overline{\langle\vec{y}, \vec{y}\rangle}\left[1-2(N-1) \cdot \frac{p j_{0}}{\sqrt{N}}+\left(N^{2}-N\right) \cdot \frac{p^{2} j_{0}^{2}}{N}\right] \\
& -\overline{\{\vec{y}, \vec{y}\}}\left[2 \cdot \frac{p j_{0}}{\sqrt{N}}-p^{2} j_{0}^{2}\right]
\end{aligned}
$$

Now, we follow the same process to the diagonal part of $\mathbb{E}[\langle\vec{x}, \vec{x}\rangle], \mathbb{E}[\langle\vec{x}, \vec{x}\rangle]_{j j}$. After simplifying:

$$
\begin{aligned}
\overline{\{\vec{x}, \vec{x}\}} & =\overline{\{\vec{y}, \vec{y}\}}\left[1-2 \cdot \frac{p j_{0}}{\sqrt{N}}+p^{2} j_{0}^{2}\right] \\
& -\overline{\langle\vec{y}, \vec{y}\rangle}\left[2(N-1) \cdot \frac{p j_{0}}{\sqrt{N}}-\left(N^{2}-N\right) \cdot \frac{p^{2} j_{0}^{2}}{N}\right]
\end{aligned}
$$

Solving for the Expectations

To see the long-term behaviour, we use \mathcal{O} and o notation,

$$
\left\{\begin{array}{l}
\overline{\langle\vec{x}, \vec{x}\rangle}=\overline{\langle\vec{y}, \vec{y}\rangle} \cdot N\left(p^{2} j_{o}^{2}\right)+o(N)-\overline{\{\vec{y}, \vec{y}\}} \cdot\left(-p^{2} j_{o}^{2}\right)+o(1) \\
\{\vec{x}, \vec{x}\}=\overline{\{\vec{y}, \vec{y}\}} \cdot\left(1+p^{2} j_{o}^{2}\right)+o(1)-\overline{\langle\vec{y}, \vec{y}\rangle} \cdot N\left(-p^{2} j_{o}^{2}\right)+o(N)
\end{array}\right.
$$

Hence, $\overline{\langle\vec{y}, \vec{y}\rangle}=-\frac{\overline{\langle\vec{y}, \vec{y}\}}}{N}+\frac{\overline{\langle\vec{x}, \vec{x}\rangle}}{p^{2} j_{0}^{2} N}+o\left(\frac{1}{N}\right)$,
So we need to find a C according to $\overline{\{\vec{y}, \vec{y}\}}$ and $\overline{\langle\vec{x}, \vec{x}\rangle}$ such that $\overline{\langle\vec{y}, \vec{y}\rangle}=\frac{C}{N}+o\left(\frac{1}{N}\right) \approx \mathcal{O}\left(\frac{1}{N}\right)$

Identity Case: $\langle\vec{x}, \vec{x}\rangle=I_{n}$

With the identity case, only the diagonal contributes.
So, $\overline{\langle\vec{x}, \vec{x}\rangle}=0$ and $\overline{\{\vec{x}, \vec{x}\}}=1$.

$$
\left\{\begin{array}{l}
0=\overline{\langle\vec{y}, \vec{y}\rangle} \cdot N\left(p^{2} j_{o}^{2}\right)+o(N)+\overline{\{\vec{y}, \vec{y}\}} \cdot\left(p^{2} j_{o}^{2}\right)+o(1) \\
1=\overline{\{\vec{y}, \vec{y}\}} \cdot\left(1+p^{2} j_{o}^{2}\right)+o(1)+\overline{\langle\vec{y}, \vec{y}\rangle} \cdot N\left(p^{2} j_{o}^{2}\right)+o(N)
\end{array}\right.
$$

Then $\overline{\{\vec{y}, \vec{y}\}}=1$; together with $\overline{\langle\vec{x}, \vec{x}\rangle}=0$, we have $C=-1$.
We expect $\overline{\langle\vec{y}, \vec{y}\rangle}=-\frac{1}{N}+o\left(\frac{1}{N}\right)$

$\langle\vec{x}, \vec{x}>\sim \mathcal{N}(\mu, \sigma)$ with Fixed Parameters

Since for each entry of $\langle\vec{x}, \vec{x}>$ has expectation μ, we have $\overline{\langle\vec{x}, \vec{x}\rangle}=\overline{\{\vec{x}, \vec{x}\}}=\mu$.
$\left\{\begin{array}{l}\mu=\overline{\langle\vec{y}, \vec{y}\rangle} \cdot N\left(p^{2} j_{o}^{2}\right)+o(N)+\overline{\{\vec{y}, \vec{y}\}} \cdot\left(p^{2} j_{o}^{2}\right)+o(1) \\ \mu=\overline{\{\vec{y}, \vec{y}\}} \cdot\left(1+p^{2} j_{o}^{2}\right)+o(1)+\overline{\langle\vec{y}, \vec{y}\rangle} \cdot N\left(p^{2} j_{o}^{2}\right)+o(N)\end{array}\right.$
then $\overline{\{\vec{y}, \vec{y}\}}=0$, so $C=\frac{\mu}{p^{2} j_{0}^{2}}$.
We expect $\overline{\langle\vec{y}, \vec{y}\rangle}=\frac{C}{N}+o\left(\frac{1}{N}\right)=\frac{\mu}{p^{2} j_{0}^{2} \cdot N}+o\left(\frac{1}{N}\right)$

$<\vec{x}, \vec{x}>\sim \mathcal{N}(N \mu, \sqrt{N} \sigma)$ with Non-Fixed Parameters

Since for each entry of $\langle\vec{x}, \vec{x}\rangle$ has expectation $N \mu$, comparing with the one with fixed-parameters, C would be $\frac{\mu}{p^{2} j_{0}^{2}} \cdot N$. $\overline{\langle\vec{y}, \vec{y}\rangle}=\frac{\mu}{p^{2} j_{0}^{2}}+o(1)$

Identity Case

$\langle\vec{x}, \vec{x}\rangle=I_{n}$:
Theoretical value: $\overline{\langle\vec{y}, \vec{y}\rangle}=-\frac{1}{N}+o\left(\frac{1}{N}\right)$
Simulation of $\mathrm{E}<\mathrm{y}, \mathrm{y}>\mathrm{Vs} .-1 / \mathrm{N}$

Normal Case With Fixed Parameters

$<\vec{x}, \vec{x}>\sim \mathcal{N}\left(\mu, \sigma^{2}\right):$
Theoretical value: $\overline{\langle\vec{y}, \vec{y}\rangle}=\frac{C}{N}+o\left(\frac{1}{N}\right)=\frac{\mu}{p^{2} j_{0}^{2} \cdot N}+o\left(\frac{1}{N}\right)$

$\mathrm{E}<\mathrm{y}, \mathrm{y}>$ with Any fixed-mean Distribution Comparision

Normal Case With Non-fixed Parameters

$\left\langle\vec{x}, \vec{x}>\sim \mathcal{N}\left(N \mu, \sqrt{N} \sigma^{2}\right):\right.$
Theoretical value: $\overline{\langle\vec{y}, \vec{y}\rangle}=C+o\left(\frac{1}{N}\right)=\frac{\mu}{p^{2} j_{0}^{2}}+o(1)$
Simulation of $\mathrm{E}<\mathrm{y}, \mathrm{y}>\mathrm{Vs} . \log (\mathrm{t})$

Identity Case

$$
\langle\vec{x}, \vec{x}\rangle=I_{n}:
$$

Simulation of V[<y,y>] Vs. $1 / \mathrm{N}$

Introduction

Expectation

Normal Case

$\left\langle\vec{x}, \vec{x}>\sim \mathcal{N}\left(\mu, \sigma^{2}\right) \operatorname{or} \mathcal{N}\left(N \mu, \sqrt{N} \sigma^{2}\right):\right.$

Simulation of normal fixed-mean $\mathrm{V}[<\mathrm{y}, \mathrm{y}>$]

Simulation of $\mathrm{V}[<\mathrm{y}, \mathrm{y}>$]

Numerically Simulate SDE:

$\frac{d \vec{y}}{d t}=F(\vec{y}, t)+G(\vec{y}, t) \frac{d \vec{W}}{d t}$, where $\vec{W}(t) \in \mathbb{R}^{m}$ is an m-dimensional
Winer process, and $G: \mathbb{R}^{n} \times \mathbb{R} \rightarrow \mathbb{R}^{n \times m}$

Numerically Simulate SDE:

$\frac{d \vec{y}}{d t}=F(\vec{y}, t)+G(\vec{y}, t) \frac{d \vec{W}}{d t}$, where $\vec{W}(t) \in \mathbb{R}^{m}$ is an m-dimensional Winer process, and $G: \mathbb{R}^{n} \times \mathbb{R} \rightarrow \mathbb{R}^{n \times m}$

In our model, it would be:
$\vec{y}_{i+1}=\vec{y}_{i}+(J-I) \vec{y}_{i} \cdot d t+d w$, where $d W \sim \mathcal{N}(0, \sqrt{d t})$, i is the steps that we partition on .

Numerically Simulate SDE:

$\frac{d \stackrel{\rightharpoonup}{y}}{d t}=F(\vec{y}, t)+G(\vec{y}, t) \frac{d \vec{W}}{d t}$, where $\vec{W}(t) \in \mathbb{R}^{m}$ is an m-dimensional Winer process, and $G: \mathbb{R}^{n} \times \mathbb{R} \rightarrow \mathbb{R}^{n \times m}$

In our model, it would be:
$\vec{y}_{i+1}=\vec{y}_{i}+(J-I) \vec{y}_{i} \cdot d t+d w$, where $d W \sim \mathcal{N}(0, \sqrt{d t})$, i is the steps that we partition on .
By Fourier transfer, I can get $\lim _{\tau_{0} \rightarrow \infty} \frac{\operatorname{cov}\left(N_{y j}\left(\tau_{0}\right), N_{y_{k}}\left(\tau_{0}\right)\right)}{\tau_{0}}=\left\langle y_{j}, y_{k}\right\rangle$

Numerically Simulate SDE:

$\frac{d \vec{y}}{d t}=F(\vec{y}, t)+G(\vec{y}, t) \frac{d \vec{W}}{d t}$, where $\vec{W}(t) \in \mathbb{R}^{m}$ is an m-dimensional Winer process, and $G: \mathbb{R}^{n} \times \mathbb{R} \rightarrow \mathbb{R}^{n \times m}$

In our model, it would be:
$\vec{y}_{i+1}=\vec{y}_{i}+(J-I) \vec{y}_{i} \cdot d t+d w$, where $d W \sim \mathcal{N}(0, \sqrt{d t})$, i is the steps that we partition on .
By Fourier transfer, I can get $\lim _{\tau_{0} \rightarrow \infty} \frac{\operatorname{cov}\left(N_{y j}\left(\tau_{0}\right), N_{y_{k}}\left(\tau_{0}\right)\right)}{\tau_{0}}=\left\langle y_{j}, y_{k}\right\rangle$ In simulation, I can choose a large τ_{0} to estimate $\mathbb{E}\left[\left\langle y_{j}, y_{k}\right\rangle\right]$:

$$
\frac{\operatorname{cov}\left(N_{y_{j}}\left(\tau_{0}\right), N_{y_{k}}\left(\tau_{0}\right)\right)}{\tau_{0}} \approx<y_{j}, y_{k}>
$$

Introduction
Derivation Our Results Simulation
Summary

Numerically Simulate SDE:

Simulation of OU-process

In Summary:

Our Neuroscience Model:

$\tau \cdot \frac{d \vec{y}}{d t}=-\vec{y}+J \vec{y}+\vec{x}$
(1) Solution: $\vec{y}(t)=A *(J \vec{y}(t)+\vec{x}(t))$.
(2) Cross-Spectral Density:

$$
\langle\vec{y}, \vec{y}\rangle=\left(\tilde{A}^{-1}-J\right)^{-1}\langle\vec{x}, \vec{x}\rangle\left(\tilde{A}^{-1}-J\right)^{-*}
$$

(3) $\mathbb{E}[\langle\vec{y}, \vec{y}\rangle]:=\overline{\langle\vec{y}, \vec{y}\rangle}=-\frac{\overline{\{\vec{y}, \vec{y}\}}}{N}+\frac{\overline{\langle\vec{x}, \vec{x}\rangle}}{p^{2} j_{0}^{2} N}+o\left(\frac{1}{N}\right)$

- if $\langle\vec{x}, \vec{x}\rangle=I$, then $\overline{\langle\vec{y}, \vec{y}\rangle} \sim \mathcal{O}\left(\frac{1}{N}\right)$.
- if $\langle\vec{x}, \vec{x}\rangle \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$, then $\left.\overline{\langle\vec{y}}, \vec{y}\right\rangle \sim \mathcal{O}\left(\frac{1}{N}\right)$.
- if $\langle\vec{x}, \vec{x}\rangle \sim \mathcal{N}\left(N \mu, \sqrt{N} \sigma^{2}\right)$, then $\overline{\langle\vec{y}, \vec{y}\rangle} \sim \mathcal{O}(1)$.
(1) Simulations confirms the Theoretical Derivations. ©
(3) Investigate on Variance and OU-Process.

Future Work: Derive Theoretical Variance and other Statistics.

Any Questions ??

Thank You ©

Reference

囲 D. Dahmen, S. Grun, M. Diesmann, and M. Helias, Two Types of Criticality in the brain, (2017).

䡒 C. Baker, C. Ebsch, I. Lampl, and R. Rosenbaum The correlated state om balanced neronal networks, (2019).

