
Shall We Buy or Sell?

– a time series perspective of stock investment

Group 2: Bingyue Su, Yihao Fang, and Vicky Zhu

December 2021

1 Introduction

We are new to stock, and our group is entranced by the passion for exploring
new investment opportunities. As an enthusiastic group in a science field, we are
also amazed by the dynamics of stock trends. One of the reasons we question
this is that every time there is a major event, the stock market responds with
some significant ups and downs. For example, over the last decade, we noticed
some big events such as the housing bubbles back in 2008, the elections in 2016,
and the recent COVID-19 outbreaks have also changed the financial market
considerably. Firms switched their marketing strategies accordingly while still
attempting to attract new blood to their product line. This leaves much room
for understanding the stock trends and their association with relevant events.
How exciting if one can give an informed trade prediction before the closing
approaches! Although “many have tried, but most have failed, to predict the
stock market’s ups and downs” [Marjanovic(2018)], we would like to give a
try and use our class knowledge and beyond to build an informative statistical
model.

In particular, we are interested in the Amazon and Walmart daily stock since
they are closely related as retail firms but targeting different market (online
versus physical stores). We obtained the data from 01/01/2006 to 01/01/2018
in the Kaggle DJIA 30 Stock Time Series competition in 2018. Hopefully our
model can be useful for the investment field.

2 Method

We started our analysis by exploring Amazon and Walmart time series plots
and built simple models that we learned from the class, then we explored other
sophisticated methods beyond the scope of the classroom and refined our models.

2.1 ARIMA Modeling

Amazon Data: We see a constantly going up trend with the increasing vari-
ance. These are the signals of non-stationary. Although the seasonality is not

1



Figure 1: Time series plots: Left (non-stationary): original Amazon stock
time series plot. Right (stationary): after taking a log transformation and first
difference plot.

obvious, we decided to take the first difference after the log transformation to
make it stationary (Figure1).

Figure 2: ACF and PACF of the stationary AMZN data. ACF (top) and
PACF (bottom) indicated that the second lag is significant.

To identify a suitable model for the mean, we checked the auto correla-
tion function (ACF) and partial ACF (PACF) plots (Figure2). Noticed the
significance of the second lags, so we can try some standard auto-regressive
integrated moving average (ARIMA) models such as ARIMA (2,1,0), ARIMA
(0,1,2), and ARIMA (2,1,2) [Robert and Stoffer(2017)]. After a few attempts,
we decided to fit it with an ARIMA(0,1,2). The diagnostic plots in Figure 3
indicate ARIMA(0,1,2) is a good model. Although the QQ plot showed a flat
tail, due to the nature of financial data, it is common to have a t-distribution
residual.

We reserved the last half year (07/01-01/01/2018) data as a validation test-

2



Figure 3: ARIMA(0,1,2) Diagnostic Plot.

ing set and compared ARIMA fit with double exponential smoothing (DES)
method for the forecasts. We calculated prediction errors as the root of mean

squared error, RMSE =

√
1
m

m∑
i=1

(yi − ŷi)2, where m = 1, 2, . . . , 126 is the half

year size, y is the prediction, and ŷ is the true stock value. Noticed that ARIMA
model has a smaller prediction error (58.43 versus 68.06), whereas the plot
showed the confident bend width of DES is much smaller.

Figure 4: Prediction Comparison. Black: original time series from
09/01/2016 to 01/01/2018. Red: ARIMA (0,1,2) fit. Green: DES predictions.

Amazon stock data is rather a simple example in the realm of stocks, next we
consider Walmart stock. As the competitor of Amazon, it has a more realistic
setting since the stock has several periods of consistent going ups and down.

Walmart Data: Similar to the analysis in Amazon stock, we plotted Wal-
mart’s time series and its transformation in Figure 5. In addition to the overall
increasing trend, we noticed other noteworthy patterns such as the appear-

3



Figure 5: Time series plots. Same as in Figure 1, except it is Walmart stock.

ance of heteroscedasticity and several abrupt changes at different time points.
While the ACF and PACF plots did not give much information, we tried several

Figure 6: Diagnostic plots of ARIMA(5,1,0)

ARIMA models and decided to fit the mean with ARIMA (5,1,0). In Figure
6, we saw the residuals deviate from normal distribution and many p-values
are on the rejection line. We believe residuals still contain information, which

4



enlightened us to explore generalized auto-regressive conditional heteroskedas-
ticity (GARCH) models for the variance [Robert and Stoffer(2017)].

2.2 GARCH Modeling

Upon ARIMA(5,1,0) fit for the mean, we used GARCH(1,1) for the variance.
The ACF and QQ plots in Figure 7 indicated a GARCH effect for our model.
The residuals are uncorrelated and accord with t-distribution.This indeed re-
flects the characteristics of financial data. For the completeness, we fitted

Figure 7: GARCH fit for Walmart Stock. ACF and QQ plots of Residuals.

GARCH model to Amazon data, but did not see reductions on prediction error
(61.01), so the simple ARIMA is sufficient.

Figure 8: Prediction. Prediction of ARIMA, GARCH, SARIMA and DES.

In comparison of the prediction performance, ARIMA, GARCH and DES

5



model in Figure 8 can only capture the overall increasing prediction perfor-
mance, but not the abrupt increments. We further assumed a period of 260 (52
weeks × 5 weekdays) and fitted a SARIMA model. Although this model can
capture some dynamics, it could not forecast the skyrocket moment in 2017. In
stock data, some significant changes may be affected by other complex factors
that are difficult to predict based on the previous patterns. Among all the tradi-
tional models, The ARIMA(5,1,0)+GARCH(1,1) model gives the best accuracy
(RMSE at 10.79). For the prediction in a detailed and microscope level, we dig
into other methods beyond the wall of our classroom.

2.3 GAM Modeling

Figure 9: GAM in Amazon and Walmart stocks forecasting. Blue:
training set. Orange curve: test set. Green: predictions.

Generalized additive model (GAM) [Taylor and Letham(2018)] has the re-
gression form in time t,

y(t) = g(t) + s(t) + h(t) + ϵt.

Here g(t) is a trend function which models non-periodic changes, s(t) represents
periodicity, and h(t) captures the effects of potentially irregular schedules such

6



as holiday. The error term ϵt represents any idiosyncratic changes which are
not accommodated by the model. Implementing GAM in python using Prophet
package, we picked a piece-wise linear function g(t) to capture the trend, Fourier
series s(t) to describe the seasonality, and identity function to grab the holiday
effects. With the assumption of normal ϵt, we used the default priors and
hyper-parameters in the model. To achieve the maximum likelihood function,
we evaluated in a L-BFGS optimization method.

As shown in Figure 9, GAM is able to capture the overall trend in Amazon
data. The predictions look linear because the seasonal part is not significant
within Amazon stock. However, the GAM predictions fail in Walmart stock
since the decreasing forecasting values go in the opposite direction in compar-
ing to the truly increasing trend. We hypothesized that this is related to the
previous training trend period that our piece-wise linear function detects, in
which GAM predicts consistent decreasing values from the last period of the
decreasing trend in 2015.

2.4 LSTM Modeling

Figure 10: LSTM model in Amazon and Walmart stocks forecasting.
Blue: training set. Orange: test set. Green: predictions.

We also attempted a long short term memory (LSTM) model in a recurrent
neural network (RNN) [Sak et al.(2014)Sak, Senior, and Beaufays], where each
layer in the model shares the same structure and takes the inputs xt sequentially.
For example, in i− th chunk, we have a hidden state hi−1 and a cell state Ci−1

inheriting from the previous chunk. To update current hi and Ci, we combined

7



the previous hidden state ht−1 and current observation xi in different gates (i.e.
the input, the forget, and the outcome gate). After update, the information
proceeds to the next chunk. We employed a Pytorch package in Python and
established a LSTM model with two layers. We also set up the window length
to be 60, which forecasts the current price using previous 60 values.

We predicted the stock prices in one-step and multi-steps shown in Figure
10. The one-step prediction is considerably close to the true value, especially for
Walmart data, while the multi-steps predictions are far away from the true val-
ues due to error accumulation. This indicates that our LSTM model is powerful
to forecast a short period of time window but powerless for a longer time.

3 Discussion

Amazon stock has a pretty consistent increasing trend that we can use a simple
ARIMA model for prediction, so I will probably keep this stock for the long-
term return; whereas Walmart stock has a general increasing trend but with a
big variability under several influences. Although for the neighboring points, we
could use SARIMA or LSTM(fewer-step) for a better predictions, if considering
longer window of the time, none of the methods can hold its accuracy! I will
probably better off by doing some short-term management for this stock.

Fun Fact: in 2015, Walmart has its technology reformed. it rebuilt their
e-commerce and delivery system. It also increased 1.5 billion in labour wage
spending. [Taylor and Letham(2018)]. As a consequence of large spending, the
earning decreased in the next following years. Such strategy of moving towards
more online stores does give them the stock skyrockets phenomenon in 2017.
Similarly, Amazon also came up with its strategy of moving more offline stores
such as the purchase of Whole Foods in 2017, opened up Amazon go, fresh,
book, etc.

In our opinions, in responding to the market’s condition and people’s need,
while these two firms are monopolies in their own territories, they are more
and more alike and acting like retail empires that keep expending and invading
each others’ boundaries. So the retail war will continue remaining, and this
competition is good to break the monopoly capitalism and keeps our market in
a healthier space.

Future Direction: for sophisticated stocks like WAMT, we may consider
other models such as applying an intervention model by setting several different
time thresholds, discovering other correlated elements that can be incorporated
into ARIMAX model, and redeveloping a deeper level of neural networks or
reconsidering other activation function and smoothing techniques for the refine-
ment.

8



4 Appendix

library(xts)

library(astsa)

library(forecast)

########### Amazon Stock ###########

AMZN=read.table("AMZN_2006-01-01_to_2018-01-01.csv",

sep=’,’,head=TRUE)

par(mfrow=c(1,2))

AMZN_close=as.xts(AMZN$Close,as.Date(AMZN$Date))

plot(AMZN_close) # increasing variance

WMT=read.table("WMT_2006-01-01_to_2018-01-01.csv",

sep=’,’,head=TRUE)

WMT_close=as.xts(WMT$Close,as.Date(WMT$Date))

plot(WMT_close)

acf2(AMZN_close)

######################################## end of first time series plot

## TS Plot and Cleaning

par(mfrow=c(1,2))

plot(AMZN_close, main = "Original")

plot(diff(log(AMZN_close)), col=4, main = "After Transformation")

par(mfrow=c(1,1))

plot(log(AMZN_close))

acf2(log(AMZN_close)) # need to take a first order difference

plot(diff(diff(log(AMZN_close))),260)

######################################## end of second time series plot and cleaning

acf2(diff(log(AMZN_close)))

auto.arima(log(AMZN_close))

AMZN_arima_fit101<-sarima(log(AMZN_close),0,1,0)

AMZN_arima_fit011<-sarima(log(AMZN_close),0,1,1)

AMZN_arima_fit110<-sarima(log(AMZN_close),1,1,0)

AMZN_arima_fit111<-sarima(log(AMZN_close),1,1,1)

AMZN_arima_fit012<-sarima(log(AMZN_close),0,1,2)

AMZN_arima_fit210<-sarima(log(AMZN_close),2,1,0)

AMZN_arima_fit112<-sarima(log(AMZN_close),1,1,2)

AMZN_arima_fit211<-sarima(log(AMZN_close),2,1,1)

AMZN_arima_fit212<-sarima(log(AMZN_close),2,1,2)

9



######################################## end of acf analysis

sarima(log(AMZN_close),1,1,1)

AMZN_arima_fit111$ttable

sarima(log(AMZN_close),0,1,2)

AMZN_arima_fit012$ttable

######################################## end of model comparisons

par(mfrow=c(1,1))

#AMZN_pred111<-sarima.for(log(AMZN_close), n.ahead = 10, 1,1,1)

logAMZN_pred012<-sarima.for(log(AMZN_close[c(1:2893),]), n.ahead = 127, 0,1,2)

plot(exp(logAMZN_pred012$pred))

### putting them into one plot AND present a partial plot

time_pred=as.Date(WMT$Date[c(2893:3019)])

AMZN_fit2=as.xts(as.vector(logAMZN_pred012$pred), time_pred)

AMZN_fit2_up=as.xts(as.vector(logAMZN_pred012$pred+logAMZN_pred012$se), time_pred)

AMZN_fit2_down=as.xts(as.vector(logAMZN_pred012$pred-logAMZN_pred012$se), time_pred)

plot(AMZN_close[c(2700:3019)], type = "l", main = "amzon-close")

lines(exp(AMZN_fit2),col=2, lwd = 3)

lines(AMZN_fit1,col=3, lwd = 3)

lines(exp(AMZN_fit2_up),col=2)

# Double exponential prediction

DoubleES <- HoltWinters(AMZN_close[c(1:2893),], gamma = FALSE)

predictedAMZN <- forecast(DoubleES, 127)

plot(predictedAMZN)

AMZN_fit1=as.xts(as.vector(predictedAMZN$mean), time_pred)

AMZN_fit1_up=as.xts(as.vector(predictedAMZN$upper[,2]), time_pred)

AMZN_fit1_down=as.xts(as.vector(predictedAMZN$lower[,2]), time_pred)

plot(AMZN_fit1)

### putting them into one plot AND present a partial plot

plot(AMZN_close[c(2700:3019)], type = "l", main = "amzon-close")

lines(AMZN_fit1,col=2, lwd = 3)

lines(AMZN_fit1_up,col=4)

lines(AMZN_fit1_down,col=4)

### putting everything into one plot

plot(AMZN_close[c(2700:3019)], type = "l", main = "amzon-close")

lines(exp(AMZN_fit2),col=2, lwd = 3)

lines(AMZN_fit1,col=3, lwd = 3)

10



lines(exp(AMZN_fit2_up),col=2)

lines(exp(AMZN_fit2_down),col=2)

lines(AMZN_fit1_up,col=3)

lines(AMZN_fit1_down,col=3)

### Prediction errors:

true_value = AMZN$Close[c(2893:3019)]

error1 = sqrt(sum(as.numeric(exp(logAMZN_pred012$pred)-true_value)^2)/127)

error2 = sqrt(sum((predictedAMZN$mean-true_value)^2)/127)

######################################## end of model forcastings

AMZN_res = AMZN_arima_fit012$fit$residuals

par(mfrow=c(1,2))

acf2(AMZN_res, max.lag = 20)

acf2(AMZN_res^2, max.lag = 20) # indicate

library(FinTS)

ArchTest(diff(log(AMZN_close))) # significant

dlogAMZN = diff(log((AMZN$Close)))

time_AMZN<- index(dlogAMZN)

Garch_AMZN=garchFit(~arma(0,2)+garch(1,1),cond.dist = "std",data=dlogAMZN)

summary(Garch_AMZN)

# the fitted values

par(mfrow=c(1,1))

fitted_value <- Garch_AMZN@fitted

plot(time_AMZN, dlogAMZN, type = "l", main = "Amazon-return")

lines(time_AMZN, fitted_value, col="red")

garch_AMZN1<-predict(Garch_AMZN, n.ahead = 127)

#garch_AMZN2<-forecast(Garch_AMZN, n.ahead = 127)

d = garch_AMZN1$meanForecast

exp(diffinv(d, xi = 1))

###another garch model

library(rugarch)

spec <- ugarchspec(variance.model=list(modl = "sGARCH",

garchOrder = c(1, 1)),

mean.model = list(armaOrder = c(0,2)),

distribution.model = "std")

# without fixed parameters here

fit <- ugarchfit(spec, data = dlogAMZN)

pred_garch=ugarchforecast(fit,dlogAMZN,n.ahead=127)

pred_mean=pred_garch@forecast$seriesFor

11



pred_sd=pred_garch@forecast$sigmaFor

pred_AMZN=rep(0,126)

pred_upper=rep(0,126)

pred_lower=rep(0,126)

for(i in 1:127){

if(i==1){

pred_AMZN[i]=log(AMZN$Close[2893])+pred_mean[i]

pred_upper[i]=log(AMZN$Close[2893])+pred_mean[i]+pred_sd[i]

pred_lower[i]=log(AMZN$Close[2893])+pred_mean[i]-pred_sd[i]

}else{

pred_AMZN[i]=pred_AMZN[i-1]+pred_mean[i]

pred_upper[i]=pred_upper[i-1]+pred_mean[i]+pred_sd[i]

pred_lower[i]=pred_lower[i-1]+pred_mean[i]-pred_sd[i]

}

}

pred_AMZN=exp(pred_AMZN)

pred_upper=exp(pred_upper)

pred_lower=exp(pred_lower)

pred_upper=as.xts(pred_upper,time_pred)

pred_lower=as.xts(pred_lower,time_pred)

pred_AMZN=as.xts(pred_AMZN,time_pred)

par(mfrow=c(1,1))

plot(AMZN_close[c(2700:3019)], type = "l", main = "amzon-close with ARIMA and GARCH")

lines(pred_AMZN,col=3,lwd=3)

#lines(pred_upper,col=3,lwd=3)

#lines(pred_lower,col=3,lwd=3)

error3 = sqrt(sum((pred_AMZN-true_value)^2)/127)

######################################## end of GARCH model detaction

############## Walmart Stock ############

rm(list=ls())

WMT=read.table("WMT_2006-01-01_to_2018-01-01.csv",sep=’,’,head=TRUE)

par(mfrow=c(1,1))

WMT_close=as.xts(WMT$Close,as.Date(WMT$Date))

plot(WMT_close, main = "Original")

plot(diff(log(WMT_close)), col=4, main = "After Transformation")

#We notice non-stationary pattern, so need to take diff

plot(log(WMT_close))

plot(diff(log(WMT_close)))

library(astsa)

12



acf2(diff(diff(log(WMT_close)),5))

# seems like there is someseasonality

plot(diff(WMT_close,5))

acf2(diff(WMT_close,5))

plot(diff(diff(WMT_close),5))

acf2(diff(diff(WMT_close),5))

#ma model

sarima(log(WMT_close), p=0, d=1, q=1, P=0, D=1, Q=1, S = 0)

sarima(WMT_close[c(2707:3000),], p=0, d=1, q=0)

######### Walmart Stock (ARIMA and Garch model)

WMT=read.table("/Users/bingyuesu/Time series/FinalProject/archive/

WMT_2006-01-01_to_2018-01-1.csv",

sep=’,’,head=TRUE)

WMT_close=as.xts(WMT$Close,as.Date(WMT$Date))

time_pred=as.Date(WMT$Date[c(2895:3020)]) #half year:2895, two month: 2980

logWMT=log(WMT_close[c(1:2894)])

plot(logWMT)

plot(WMT_close)

dlogWMT=diff(logWMT)[-1]

time_dlogWMT <- index(dlogWMT)

plot(dlogWMT,col=’blue’)

adf.test(dlogWMT)

acf2(dlogWMT)

dlogWMT_fit=sarima(dlogWMT,p=5, d=0, q=0, no.constant = TRUE)

sarima(logWMT,p=5, d=1, q=0, no.constant = TRUE)

WMT_sarima_fit=sarima.for(logWMT,n.ahead=126,p=5, d=1, q=0)

#half year: 126, two month: 41

WMT_sariam_s_fit=sarima.for(logWMT,n.ahead=126,p=5, d=1, q=0,0,1,0,260)

pred_WMT_sarima_s_mean=WMT_sariam_s_fit$pred

pred_WMT_sarima_mean=WMT_sarima_fit$pred

pred_WMT_sarima_upper=WMT_sarima_fit$pred+WMT_sarima_fit$se

pred_WMT_sarima_lower=WMT_sarima_fit$pred-WMT_sarima_fit$se

plot(WMT_close[c(2700:3020)])

lines(as.xts(as.vector(exp(pred_WMT_sarima_mean)),time_pred),col=2,lwd=3)

#lines(as.xts(as.vector(exp(pred_WMT_sarima_upper)),time_pred),col=2,lwd=3)

#lines(as.xts(as.vector(exp(pred_WMT_sarima_lower)),time_pred),col=2,lwd=3)

doubleWMT=HoltWinters(WMT_close[c(1:2894)],gamma=FALSE)

13



pred_WMT_double=predict(doubleWMT,n.ahead=126)

lines(as.xts(as.vector(pred_WMT_double),time_pred),col=3,lwd=3)

lines(as.xts(as.vector(exp(pred_WMT_sarima_s_mean)),time_pred),col=4,lwd=3)

sqrt(sum((WMT_close[c(2895:3020)]-as.vector(exp(pred_WMT_sarima_mean)))^2)/126)

sqrt(sum((WMT_close[c(2895:3020)]-as.vector(pred_WMT_double))^2)/126)

sqrt(sum((WMT_close[c(2895:3020)]-as.vector(exp(pred_WMT_sarima_s_mean)))^2)/126)

#dlogWMT_fit=sarima(dlogWMT,p=2, d=0, q=0, no.constant = TRUE)

res=dlogWMT_fit$fit$residuals

acf2(res)

acf2(res^2)

Garch_WMT=garchFit(~arma(5,0)+garch(1,1),cond.dist = "std",data=dlogWMT)

summary(Garch_WMT)

plot(Garch_WMT)

plot(time_dlogWMT, dlogWMT, type = "l", main = "WMT-close",

ylab=’diff of log WMT close’, xlab=’time’)

fitted_sd <- Garch_WMT@sigma.t

lines(time_dlogWMT, fitted_sd, col="red")

lines(time_dlogWMT, -fitted_sd, col="red")

lines(time_dlogWMT, 2*fitted_sd, col="blue")

lines(time_dlogWMT, -2*fitted_sd, col="blue")

predict(Garch_WMT, n.ahead = 126)

forecast(Garch_WMT, n.ahead=126)

###another garch model

spec <- ugarchspec(variance.model=list(model = "sGARCH",

garchOrder = c(1, 1)),

mean.model = list(armaOrder = c(5,0)),

distribution.model = "std")

# without fixed parameters here

fit <- ugarchfit(spec, data = dlogWMT)

pred_garch=ugarchforecast(fit,dlogWMT,n.ahead=126)

pred_mean=pred_garch@forecast$seriesFor

pred_sd=pred_garch@forecast$sigmaFor

diff_upper=pred_mean+pred_sd

diff_lower=pred_mean-pred_sd

pred_WMT=rep(0,126)

pred_upper=rep(0,126)

pred_lower=rep(0,126)

14



for(i in 1:126){

if(i==1){

pred_WMT[i]=logWMT[2894]+pred_mean[i]

pred_upper[i]=logWMT[2894]+diff_upper[i]

pred_lower[i]=logWMT[2894]+diff_lower[i]

}else{

pred_WMT[i]=pred_WMT[i-1]+pred_mean[i]

pred_upper[i]=pred_upper[i-1]+diff_upper[i]

pred_lower[i]=pred_lower[i-1]+diff_lower[i]

}

}

pred_WMT=exp(pred_WMT)

pred_upper=exp(pred_upper)

pred_lower=exp(pred_lower)

pred_upper=as.xts(pred_upper,time_pred)

pred_lower=as.xts(pred_lower,time_pred)

pred_WMT=as.xts(pred_WMT,time_pred)

plot(WMT_close[c(2700:3020)])

lines(pred_WMT,col=6,lwd=3)

addLegend(legend.loc = "topleft",

legend.names = c("ARIMA",

"Double Exponential Smoothing", "SARIMA","GARCH"),

col = NULL,

col = c(1,2,3,6))

legend("topleft", legend=c("ARIMA", "Double Exponential Smoothing", "SARIMA","GARCH"),

col=c(1,2,3,6),lty=c(1,2,3,6), cex=0.8)

lines(pred_upper,col=3,lwd=3)

lines(pred_lower,col=3,lwd=3)

sqrt(sum((WMT_close[c(2895:3020)]-as.vector(pred_WMT))^2)/126)

exp(pred_WMT_sarima_mean)

#############

GAM model via Prophet package in Python

#############

import numpy as np

import pandas as pd

ama_data = pd.read_csv(’../input/final-data/

AMZN_2006-01-01_to_2018-01-01.csv’)

wmt_data = pd.read_csv(’../input/stock-time-series-20050101-to-20171231/

WMT_2006-01-01_to_2018-01-01.csv’)

test_data_size = 126

#ama_data = pd.read_csv(’../input/final-data/AMZN_2006-01-01_to_2018-01-01.csv’)

#all_data = ama_data[[’Date’,’Close’]].copy()

15



wmt_data = pd.read_csv(’../input/stock-time-series-20050101-to-20171231/

WMT_2006-01-01_to_2018-01-01.csv’)

all_data = wmt_data[[’Date’,’Close’]].copy()

all_data.columns = [’ds’,’y’]

all_data[’ds’]= pd.to_datetime(all_data[’ds’])

train_data = all_data[:-test_data_size]

test_data = all_data[-test_data_size:]

from fbprophet import Prophet

m = Prophet(weekly_seasonality=False)

m.fit(train_data)

future = m.make_future_dataframe(periods=test_data_size)

forecast = m.predict(future)

# Visualize the data

plt.figure(figsize=(16,6))

plt.title(’GAM’)

plt.xlabel(’Date’, fontsize=18)

plt.ylabel(’Close Price USD ($)’, fontsize=18)

plt.plot(train_data[’y’])

plt.plot(test_data[’y’])

plt.plot(forecast[’yhat’])

plt.legend([’Train’, ’Test’, ’Predictions’], loc=’lower right’)

plt.show()

############

LSTM

############

#wmt_data = pd.read_csv(’../input/wmtcsv/WMT_2006-01-01_to_2018-01-01.csv’)

#all_data = wmt_data[’Close’].values.astype(float).reshape(-1,1)

ama_data = pd.read_csv(’../input/final-data/AMZN_2006-01-01_to_2018-01-01.csv’)

all_data = ama_data[’Close’].values.astype(float).reshape(-1,1)

# Scale the data

from sklearn.preprocessing import MinMaxScaler

scaler = MinMaxScaler(feature_range=(0,1))

scaled_data = scaler.fit_transform(all_data)

# Create the training data set

# Create the scaled training data set

test_data_size = 126

training_data_len = len(scaled_data)-test_data_size

train_data = scaled_data[0:int(training_data_len), :]

# Split the data into x_train and y_train data sets

x_train = []

y_train = []

for i in range(60, len(train_data)):

x_train.append(train_data[i-60:i, 0])

16



y_train.append(train_data[i, 0])

if i<= 61:

print(x_train)

print(y_train)

print()

# Convert the x_train and y_train to numpy arrays

x_train, y_train = np.array(x_train), np.array(y_train)

# Reshape the data

x_train = np.reshape(x_train, (x_train.shape[0], x_train.shape[1], 1))

# x_train.shape

from keras.models import Sequential

from keras.layers import Dense, LSTM

# Build the LSTM model

model = Sequential()

model.add(LSTM(128, return_sequences=True, input_shape= (x_train.shape[1], 1)))

model.add(LSTM(64, return_sequences=False))

model.add(Dense(25))

model.add(Dense(1))

# Compile the model

model.compile(optimizer=’adam’, loss=’mean_squared_error’)

# Train the model

model.fit(x_train, y_train, batch_size=1, epochs=2)

#one-step

test_data = scaled_data[training_data_len - 60: , :]

# Create the data sets x_test and y_test

x_test = []

y_test = all_data[training_data_len:]

for i in range(60, len(test_data)):

x_test.append(test_data[i-60:i, 0])

# Convert the data to a numpy array

x_test = np.array(x_test)

# Reshape the data

x_test = np.reshape(x_test, (x_test.shape[0], x_test.shape[1], 1 ))

# Get the models predicted price values

predictions = model.predict(x_test)

predictions_one_step = scaler.inverse_transform(predictions)

# Get the root mean squared error (RMSE)

17



rmse = np.sqrt(np.mean(((predictions_one_step - y_test) ** 2)))

#multi-steps

x_test = scaled_data[training_data_len - 60:training_data_len, :]

predictions = []

for i in range(test_data_size):

pred = model.predict(x_test[-60:].reshape(-1,60,1))

x_test = np.append(x_test,pred)

pred_unscaled = scaler.inverse_transform(pred)

predictions.append(pred_unscaled)

predictions = np.array(predictions)

rmse = np.sqrt(np.mean(((predictions - y_test) ** 2)))

# Plot the data

train = all_data[:training_data_len]

# Visualize the data

plt.figure(figsize=(16,6))

plt.title(’LSTM’)

plt.xlabel(’Date’, fontsize=18)

plt.ylabel(’Close Price USD ($)’, fontsize=18)

plt.plot(range(len(train)),train)

plt.plot(range(len(train),len(train)+len(y_test)),y_test)

plt.plot(range(len(train),len(train)+len(y_test)),predictions_one_step)

plt.plot(range(len(train),len(train)+len(y_test)),predictions.reshape(len(predictions),))

plt.legend([’Train’, ’Test’, ’One-Step’,’Multi-Steps’], loc=’lower right’)

plt.show()

18



References

[Marjanovic(2018)] B. Marjanovic. Huge stock market dataset. Kaggle, 2018.

[Robert and Stoffer(2017)] S. Robert and Stoffer. Time Series Analysis and Its
Applications: With R Examples. Springer., 2017.

[Sak et al.(2014)Sak, Senior, and Beaufays] H. Sak, A. Senior, and F. Beaufays.
Long short-term memory based recurrent neural network architectures for
large vocabulary speech recognition. arXiv preprint arXiv:1402.1128, 2014.

[Taylor and Letham(2018)] S. J. Taylor and B. Letham. Forecasting at scale.
The American Statistician, 72(1):37–45, 2018.

19


