
FIXED POINTS, LEARNING, AND PLASTICITY

IN RECURRENT NEURONAL NETWORK MODELS

A Dissertation

Submitted to the Graduate School

of the University of Notre Dame

in Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

by

Vicky R. Zhu

Robert J. Rosenbaum, Director

Graduate Program in Applied and Computational Mathematics and Statistics

Notre Dame, Indiana

April 2023



© Copyright by

Vicky R. Zhu

2023

CC-BY-4.0



FIXED POINTS, LEARNING, AND PLASTICITY

IN RECURRENT NEURONAL NETWORK MODELS

Abstract

by

Vicky R. Zhu

Recurrent neural network models (RNNs) are widely used in machine learning and

in computational neuroscience. While recurrent in artificial neural networks (ANNs)

share some basic building blocks with cortical neuronal networks in the brain, they

differ in some fundamental ways. For example, neurons communicate and learn

differently. In ANNs, neurons communicate through activations. In comparison,

biological neurons communicate via synapses and signal processing along with neuron

spiking behaviors. To link neuroscience and machine learning, I study models of

recurrent neuronal networks to establish direct, one-to-one analogs between artificial

and biological neuronal networks.

I first showed their connection by formalizing the features of cortical networks

into theorems that link to machine learning activations. This work extended the tra-

ditional excitatory-inhibitory balance network theory into a “semi-balanced” state

in which networks implement high-dimensional and nonlinear stimulus representa-

tions. To understand brain operations and neuron plasticity, I combined numerical

simulations of biological networks and mean-field rate models to evaluate the ex-

tent to which homeostatic inhibitory plasticity learns to compute prediction errors

in randomly connected, unstructured neuronal networks. I found that homeostatic

synaptic plasticity alone is not sufficient to learn and perform non-trivial predictive



Vicky R. Zhu

coding tasks in unstructured neuronal network models. To further invest in learn-

ing, I derived two new biologically-inspired RNN learning rules for the fixed points

of recurrent dynamics. Under a natural re-parameterization of the network model,

they can be interpreted as steepest descent and gradient descent on the weight ma-

trix with respect to a non-Euclidean metric and gradient, respectively. Moreover,

compared with the standard gradient-based learning methods, one of our alternative

learning rules is robust and computationally more efficient. These learning rules pro-

duce results that have implications for training RNNs to be used in computational

neuroscience studies and machine learning applications.



DEDICATION

This thesis is dedicated to my parents and family friends who have been constantly

encouraging and advising me during every challenging stage of my life. I am truly

thankful to my devoted parents, Kegang Zhu and Changhua Liu, and my brother

Philip Zhu for their unwavering support and unconditional love that made my

American dream possible. A special feeling of gratitude to our family friend,

William Hranchak, who always shares his wisdom, inspires me to work hard and

never give up. To everyone who told me to believe in higher education, dare to

dream, try hard and work harder. Everything is possible to achieve!

ii



CONTENTS

Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi

Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xviii

Chapter 1: Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 A Brief History of A Brain-inspired Machine Learning Architecture . 1
1.2 Recurrent Neural Networks (RNNs) . . . . . . . . . . . . . . . . . . . 3

1.2.1 Artificial Recurrent Neural Networks (ARNNs) . . . . . . . . 3
1.2.2 Biological Recurrent Neural Networks (BRNNs) . . . . . . . . 5

1.3 Overview and Contributions . . . . . . . . . . . . . . . . . . . . . . . 7

Chapter 2: Biological Basics and Mathematical Modeling . . . . . . . . . . . . 9
2.1 Biological Neurons . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 The Modeling Development of A Single Neuron . . . . . . . . . . . . 13

2.2.1 Leaky Integrator Model . . . . . . . . . . . . . . . . . . . . . 13
2.2.2 Exponential Integrate-and-Fire (EIF) Model . . . . . . . . . . 15
2.2.3 Synapses-Driven Model . . . . . . . . . . . . . . . . . . . . . . 17
2.2.4 Mean-Field Theory . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.5 f-I Curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3 Modeling of A Network of Neurons . . . . . . . . . . . . . . . . . . . 23
2.3.1 Recurrent Network . . . . . . . . . . . . . . . . . . . . . . . . 24
2.3.2 Connectivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.3.3 Rate Model Approximations . . . . . . . . . . . . . . . . . . . 28
2.3.4 Balanced Network Theory . . . . . . . . . . . . . . . . . . . . 29

2.4 Modeling Through Synaptic Plasticity and Learning . . . . . . . . . . 34
2.4.1 Synaptic Plasticity . . . . . . . . . . . . . . . . . . . . . . . . 35
2.4.2 Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

iii



Chapter 3: Universal Properties of Strongly Connected Networks . . . . . . . 41
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.2 Spiking Network Model Descriptions . . . . . . . . . . . . . . . . . . 43

3.2.1 Simulations of An Adaptive EIF Model . . . . . . . . . . . . . 44
3.2.2 Simulations with Inhibitory Plasticity . . . . . . . . . . . . . . 46

3.3 Linear Representations in Balanced Networks . . . . . . . . . . . . . 47
3.4 Nonlinear Representations in Semi-balanced Networks . . . . . . . . . 50

3.4.1 Conditions Break the Classical Balanced State . . . . . . . . . 50
3.4.2 Semi-balanced State in BRNNs . . . . . . . . . . . . . . . . . 52
3.4.3 A Direct Correspondence to ANNs . . . . . . . . . . . . . . . 56
3.4.4 Homeostatic Plasticity Produces “Detailed Semi-balanced” . . 59

3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Chapter 4: Can Homeostatic Plasticity Learn to Compute Prediction Errors? 68
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.2 Model Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.2.1 An EIF Network Model with Homeostatic Plasticity . . . . . . 72
4.2.2 Simulation Parameters . . . . . . . . . . . . . . . . . . . . . . 73

4.2.2.1 In the Spiking Network Model . . . . . . . . . . . . . 74
4.2.2.2 In the Mean-Field Rate Network Model . . . . . . . 74

4.3 Detectable Prediction Errors After Training . . . . . . . . . . . . . . 75
4.3.1 Time-constant Inputs . . . . . . . . . . . . . . . . . . . . . . . 75
4.3.2 An Analysis of Multiple Sub-populations for the Error Detection 77

4.3.2.1 Mean-field Rate Model Approximation . . . . . . . . 78
4.3.2.2 Separation of Timescales Approximation . . . . . . . 84

4.3.3 Distributed and Time-constant Inputs . . . . . . . . . . . . . 88
4.4 Undetectable Prediction Errors After Training . . . . . . . . . . . . . 90

4.4.1 Time-varying Inputs . . . . . . . . . . . . . . . . . . . . . . . 91
4.4.2 A Mean-field Explanation for the Absence of Detection . . . . 93

4.4.2.1 Timescale Assumptions of the Stimuli . . . . . . . . 93
4.4.2.2 Separation of Timescales over Mean Approximation . 94

4.4.3 Distributed and Time-varying Inputs . . . . . . . . . . . . . . 99
4.5 Generalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.5.1 Networks with External Input to Inhibitory Populations . . . 102
4.5.2 Networks with Increasing Mismatch Stimuli . . . . . . . . . . 107
4.5.3 Networks with More Sub-populations . . . . . . . . . . . . . . 107

4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

Chapter 5: Learning Fixed Points in Recurrent Neural Network Models . . . . 114
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
5.2 Fixed Point Firing Rate Model and Machine Learning Tasks . . . . . 117

5.2.1 Firing Rate Model Descriptions . . . . . . . . . . . . . . . . . 117
5.2.2 Fixed Point Stability . . . . . . . . . . . . . . . . . . . . . . . 118

iv



5.2.3 Supervised Learning . . . . . . . . . . . . . . . . . . . . . . . 118
5.2.4 Gradient Descent on the Recurrent Weight. . . . . . . . . . . 120

5.3 Newly Developed Learning Rules . . . . . . . . . . . . . . . . . . . . 121
5.3.1 Nonlinear Reparameterizing of the RNNs . . . . . . . . . . . . 121
5.3.2 Linear Approximation of the Reparameterized Rule . . . . . . 126
5.3.3 Regularization for Fixed Point Problems . . . . . . . . . . . . 130

5.4 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . 131
5.4.1 Example 1: Linear Least Squares Problem in One-dimension. . 132

5.4.1.1 Learning Through the Gradient Descent Approach . 134
5.4.1.2 Learning Under the Reparameterized Update. . . . . 135
5.4.1.3 Learning Via Linearizing the Reparameterized Rule . 138

5.4.2 Example 2: Linear Least Squares Problem in Higher-dimensions.138
5.4.2.1 Learning Through the Gradient Descent Approach . 143
5.4.2.2 Learning Under the Reparameterized Update. . . . . 144
5.4.2.3 Learning Via Linearizing Reparameterized rule . . . 146
5.4.2.4 An Under-parameterized Linear System. . . . . . . . 148

5.4.3 Example 3: Training Fixed Points on A Categorical Task. . . 151
5.4.3.1 Learning with Linear Activation Function . . . . . . 153
5.4.3.2 Learning with ReLu Activation using Support Sets . 157
5.4.3.3 Learning with a Sigmoidal Activation Function . . . 161

5.5 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

Chapter 6: Summary and Future Directions . . . . . . . . . . . . . . . . . . . 167
6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

Appendix A: Learning Fixed Points in RNNs (Corresponding to Chapter 5) . 172
A.1 Derivation of the Direct Gradient Descent Rule . . . . . . . . . . . . 172
A.2 Analysis of A Natural Reparameterization Learning Rule . . . . . . . 177
A.3 Linearization of the New Reparameterization Rule . . . . . . . . . . . 179
A.4 Convexity of the Cost Function for the Linear One-dimensional Model. 180
A.5 Stability Region Boundary . . . . . . . . . . . . . . . . . . . . . . . . 182
A.6 Optimal Parameters in Linear Networks . . . . . . . . . . . . . . . . 183
A.7 Learning Rules for RNNs with Nonlinear Activation Functions. . . . . 185

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

v



FIGURES

1.1 Brain regions. a: Brain division. b: Cortical regions with areas that
are associated with several specific cognition tasks. Image is taken
from Google Search. . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Neural network architecture in machine learning Left: multi-
layered feedforward networks (a.k.s DNN) are used to learn static rep-
resentations y = F (x). Middle: RNNs are used to learn functions
between time series, y(t) = F [x](t). Right: Multi-layered RNNs that
is cortical circuits alike and learn static functions as well as functions
between time series. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 A single-unit RNN diagram. Left: a compressed unit. Right: the
unfolded version of the compressed unit. From bottom to top: time
series input Xt, hidden layer ht, and output Ot. U , V , and W are the
connectivity weights of the network. Image is taken from Wikipedia
RNN Search. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 A 4-layered biological RNN. A biological RNN architecture to
model the visual cortex from Liao and Poggio’s experiments. The net-
work contains feed-forward connection (left-to-right), feed-back con-
nections (right-to-left) and lateral connections (looping back to same
area; synonymous with recurrent connections in ARNNs terminology).
[54] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1 Neuron shapes and its structure. a: Illustration of neuron mor-
phologies vary in size, shape, and location. b: The basic structure of a
neuron. Image is taken from Healthline Media: https://www.healthline.com/ 10

2.2 Neuron communication diagram. First Neuron (a.k.a. transmit-
ting or presynaptic neuron). Second Neuron (a.k.a receiving or post-
synaptic neuron). The image is taken from a Google Image search. . . 12

2.3 EIF model simulation. Top: a constant external input injection.
Middle: the membrane potential dynamics. Bottom: a spike train
simulation is to describe the middle plot. . . . . . . . . . . . . . . . . 16

2.4 Leaky integrator Model driven by two pre-synaptic neurons.
A: excitatory spike train. B: excitatory synaptic current. C: same as A
and B, except for the inhibitory neuron. E: synapse diagram with two
Pre-synaptic neurons and one post-synaptic neuron. F: the membrane
potential dynamic of the post-synaptic neuron. . . . . . . . . . . . . . 19

vi



2.5 EIF model driven by a population of pre-synaptic neurons.
A: synapse diagram with 100 Pre-synaptic excitatory neurons and 25
inhibitory post-synaptic neurons. B: raster plots of pre-synaptic ex-
citatory neurons. C: mean value of excitatory pre-synaptic neuron
current. The dash line is the stationary mean. D, E: same as B and
C, except for the inhibitory pre-synaptic neurons. F: the membrane
potential dynamic of the post-synaptic neuron. G: the total synaptic
input current by summing C and E. . . . . . . . . . . . . . . . . . . . 22

2.6 f-I curve for an EIF driven by Poisson synaptic input.. A:
Membrane potential of an EIF in a non-spiking regime. B: Membrane
potential of an EIF in the noise-driven regime. C: An f-I curve for
an EIF. The firing rate was plotted as a function of stationary mean
synaptic input. Varying Īsyn through re while keeping Na and Ja un-
changed. The blue and red dots correspond to the firing rate from A
and B. Dotted green line is the threshold linear fit of data. . . . . . . 24

2.7 EIF model in a recurrent network. A: the network scheme with
Nx = 1000 external neuron spikes using a Poisson process, and the
recurrent network contains Ne = 4000 excitatory neurons and Ni =
1000 inhibitory ones. B, C, and E: roaster plots of 100 neurons from
each group. D and F: trial-average firing rates of each post-synaptic
neuron group and their mean-field rates in dashed lines. . . . . . . . . 26

2.8 Stability of the fixed point in RNNs. A: BRNN in Section 2.3.1
under EIF model simulations and using a mean-field approximation
of rate model in Eq. 2.19 with τe = 40ms and τi = 20ms to obtain
population firing rates. B: the eigenvalue of the Jacobian matrix plot,
Re{λ(Jac)} < 0, so A has stable fixed points for each population. C:
Same as in B, except for the weight matrix, W . A, B, and C are the
population level. D: an RNN network with a size of N = 100 neurons
directly under the rate model simulations. E, and F: same as in A, B,
and C, except RNN contains some unstable fixed points for individual
neurons in D, they are points on the right side of the zero bar in E
and outside of the unit circle in F. D, E, and F are the neuron level,
where W is generated from a random matrix. . . . . . . . . . . . . . 30

2.9 E-I Balanced in a recurrent network simulated from an EIF
spiking model. Top: mean current input into excitatory (in red,
positive) and inhibitory (in blue, negative) population within the re-
current network. The mean total input (in black) is the summation
of all the inputs, and it is bouncing around 0. Bottom: trial-average
firing rates (in solid colored lines) for each neuron population and their
stationary mean-field rates (in dashed colored lines). . . . . . . . . . . 33

vii



2.10 ISP from an inhibitory neuron to an excitatory neuron A:
diagram of a synaptic neuron pair from inhibition to excitation. B: the
spike time delay, ∆t, between two spikes. C: the change of synaptic
strength, ∆Jei, as a function of ∆t. . . . . . . . . . . . . . . . . . . . 37

2.11 ISP under an EIF spiking model in a recurrent network A:
diagram of a recurrent spiking network using the same parameter set-
ting as in Figure 2.7. B: firing rates of dynamics from the EIF spiking
model evolves through ISP: the inhibitory firing rate (in blue) pushes
the excitatory firing rates (in red) towards its target rate (in black, r0.
C: a mean-field approximation rate model of B. . . . . . . . . . . . . 39

3.1 Balanced and Semi-balanced States a: Network Diagram. A re-
current spiking network of N = 3 × 104 model neurons is composed
of two excitatory populations (e1 and e2) and one inhibitory popula-
tion (i) that receive input from two external spike train populations
(x1 and x2). b: The two-dimensional space of external population
firing rates represents a stimulus space. The filled triangle and circle
show the two stimulus values used in d the first half of 500ms and
the second half of 500ms correspondingly. c: Raster plots of 200 ran-
domly selected spike trains from each population for two stimuli, and
below is the membrane potential of one neuron from population e1.
d: Mean input current to population e1, e2, and i from all excita-
tory sources (e1, e2, x1, and x2; red), from the inhibitory population
(i; blue), and from all sources (black) showing approximate excitatory-
inhibitory balance across stimuli in the first half of 500ms. With excess
inhibition in the second half of 500ms, the semi-balance state shows
that e2 and i population form a balanced sub-network. . . . . . . . . 45

3.2 Firing Rates Representation in Balanced and Semi-balanced
Networks a: Network Diagram, same as in Figure 3.1 except included
a linear readout R output. b: top is the neural manifold traced out
by firing rates in each population in the recurrent network as external
firing rates are varied across a square in stimulus space (0 ≤ rx1, rx2 ≤
30), and the bottom is the readout as a function of rx1 and rx2 from
the same simulation. c: Same as c, except this is for the semi-balanced
state. All firing rates are in Hz. . . . . . . . . . . . . . . . . . . . . . 49

viii



3.3 Detailed imbalance, balance, semi-balance, and distributed
neural representations a: Network diagram. Same as in Figure 3.1a
except there is just one excitatory and one external population and
an additional input Z⃗ = σ1Z⃗1 + σ2Z⃗2. b: Histograms of input cur-
rents to all excitatory neurons averaged over the first 40s (gray, imbal-
anced), the next 40s (yellow, balanced), and the last 40s (purple, semi-
balanced). c: Excitatory (red), inhibitory (blue), and total (black)
input currents to 100 randomly selected excitatory neurons averaged
over 2s time bins. During the first 40s, synaptic weights and σ1 = σ2

were fixed. During the next 40s, homeostatic iSTDP was turned on
and σ1 = σ2 were fixed. During the last 40s, iSTDP was on and σ1

and σ2 were selected randomly every 2s. d: Firing rates of the same
100 neurons averaged over 2s bins. . . . . . . . . . . . . . . . . . . . 61

4.1 Prediction errors after training on time-constant inputs to
multiple sub-populations. A and B: Network diagram with “train-
ing” and “mismatch” stimuli respectively. A randomly connected, re-
current spiking neural network of N = 5000 neurons consisted of two
excitatory sub-populations (e1 and e2) and one inhibitory (i) popu-
lation. During the first 100s of the simulation, the network received
a “training” stimulus in which e1 and e2 received extra external in-
put modeling bottom-up and top-down stimuli respectively (A). Then
a “mismatch” stimulus was introduced for 1s by removing the top-
down stimulus to population e2. C: Homeostatic inhibitory synaptic
plasticity caused population-averaged firing rates to converge to their
targets during training, but they deviated from their targets in re-
sponse to the mismatch stimulus. D: The deviation of the mean firing
rates from their targets (MSEmean) and the mean deviation of indi-
vidual neurons’ firing rates (MSEpop) quantify the deviation of firing
rates from their targets. E and F: Raster plots (top) and membrane
potential (bottom) of a random subset of neurons from population e1. 76

4.2 mean-field firing rate model captures the dynamics of the
spiking network model. A: Firing rates of the mean-field firing rate
model defined by Eqs. (4.6) and (4.6). Compare to Figure 4.1C. B:
MSE deviation of the firing rates from their targets (MSEmf ; light
green) and the MSE with a Poisson correction (MSEPoisson; dark
green). Compare to Figure 4.1D. . . . . . . . . . . . . . . . . . . . . 80

4.3 Slow dynamics are captured by a separation-of-timescales ap-
proximation. A: Firing rates of the model defined by Eqs. (4.12).
Compare to Figures 4.1C and 4.2A. B: MSE deviation of the firing
rates from their targets (MSEmf ; light green) and the MSE with a
Poisson correction (MSEPoisson; dark green) from the model defined
by Eqs. (4.12). Compare to Figures 4.1D and 4.2B. C: Deviation of the
inhibitory weights, wai, from the fixed point values given in Eqs. (4.14). 84

ix



4.4 Prediction errors after training on distributed time-constant
inputs. Same as Figure 4.1 except bottom-up and top-down inputs
were modeled as distributed stimuli using multivariate Gaussian inputs
vectors (Eq. (4.18)). . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.5 Undetectable prediction errors in a model with time-varying
stimuli. A and B: Network schematic. Same as Figure 4.1A except for
the magnitude of the top-down and bottom-up stimuli were multiplied
by the same time-varying signal, c(t). C-F: Same as Figure 4.1C-F
except we additionally plotted the mean excitatory firing rates (black
curve in C). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.6 Mean-field rate model with time-varying stimuli. Same as Fig-
ure 4.2 except using the time-varying stimuli from Figure 4.5. . . . . 94

4.7 Slow dynamics captured by a separation of timescales in a
model with time-dependent stimuli. Same as Figure 4.3 except
using the time-varying stimuli from Figure 4.5A-B. . . . . . . . . . . 94

4.8 Schematic illustrating why mismatch responses are detectable
after training on time-constant, but not time-dependent stim-
uli. A: Schematic representing inputs to the network in a model with
time-constant stimuli. Training stimuli occupy a single point in (U, V )
space (purple dot). The deviation of firing rates from their targets on
any particular trial is approximately proportional to the distance of the
input from its value during training (Eq. (4.15)). Since the mismatch
stimulus (orange dot) is far from the matched, training stimulus, firing
rates deviate from their target in response to the mismatched stimu-
lus (as seen in Figures 4.1–4.3). B: Schematic representing inputs to
the network in a model with time-varying stimuli. Training stimuli
(purple dots) vary in (U, V ) space along a predictable line. The mis-
matched stimulus lies far from this line. However, the deviation of
firing rates from their targets on any particular trial is approximately
proportional to the distance of the input from its mean value during
training (Eq. (4.15)). Since the distance between the mismatch input
(orange dot) and the mean training stimulus (purple x) is similar to
the typical distance between the individual training stimuli (purple
dots) and the mean training stimulus (purple x), the deviation of the
firing rates from their targets is similar for matched and mismatched
stimuli. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.9 Prediction errors after training on distributed time-dependent
inputs. Same as Figure 4.4 except bottom-up and top-down inputs
were time-dependent, as described by Eqs. (4.29)–(4.30). . . . . . . . 100

x



4.10 Similar results are obtained with input to inhibitory popu-
lations. A, B: Network schematics. Same as Figure 1A, B except
top-down external input was provided to the inhibitory population
as well. C, D: Same as Figure 1C, D except top-down external in-
put was provided to the inhibitory population as well. E, F: Same as
Figure 4.5C, D except top-down external input was provided to the
inhibitory population as well. . . . . . . . . . . . . . . . . . . . . . . 103

4.11 Similar results are obtained with distributed inputs to in-
hibitory populations. A, B: Network schematics. Same as Fig-
ure 4A, B except distributed external input was provided to the in-
hibitory population as well. C, D: Same as Figure 4.4C, D except
top-down external input was provided to the inhibitory population as
well. E, F: Same as Figure 4.9C, D except top-down external input
was provided to the inhibitory population as well. . . . . . . . . . . 105

4.12 Mismatch responses are observed with stronger mismatched
stimuli. A, B: Same as Figure 4.5 except the strength of the mis-
matched input was increased by six-fold. . . . . . . . . . . . . . . . . 108

4.13 Mismatch responses are not observed when more populations
are considered Same as Figure 4.5 except more populations were
added. Connections between populations are not shown for the sim-
plicity of the diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.1 Training fixed point from a recurrent neural network A: Di-
agram of a recurrent neural network (RNN) with static input, i.e.,
regression or image data trained to produce fixed point firing rate
output. B): Eigenvalues of connectivity matrix, W . The unit circle is
shown in blue. Stability requires that the eigenvalues of W have a real
part less than 1. C: Rectified linear function used as an “f-I” curve,
where G = Id in Eq.2.22. D: Fixed point firing rates using rectified
linear simulation for 1000 ms in C. The fixed point dynamic described
6 randomly selected neurons of the RNN in A with a size of N = 200,
neurons connectivity are under the stability in B, the external input is
generated from N−dimensional linear regression synthetic data with
some noise. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

xi



5.2 Gradient-based learning of a fixed point firing rate in a one-
dimensional linear regression task. A) A simple linear regression
task to find the best-fit line (orange) from a set of 500 randomly gen-
erated data points (blue). Model output, r (orange line), is defined
by solutions to the fixed point equation r = wr + x where x is the
input and w is the model parameter. B) The cost as a function of w.
The cost is convex and has a minimum value at w∗ (red star), but the
slope of the landscape is very different on each side of the minimum
(i.e. wleft = −2, a blue dot on the left side vs. wright = 0, black dot
on the right side). C,D) Gradient descent on w starting from initial
values wleft and wright, respectively with various learning rates. . . . . 133

5.3 Learning a fixed point firing rates in a one-dimensional lin-
ear regression task under a learning rule derived from a re-
parameterized model. A) The new parameter a = F (w) as a func-
tion of w. B) The cost as a function of a is quadratic. The red star
shows the minimum and the blue and black circles show the same initial
states, as in Figure 5.2A, mapped to the new parameter space. C,D)
Same as Figure 5.2C,D except using the learning rule from Eq. (5.35).
This is equivalent to using gradient descent on a (i.e., Eq. (5.33)) on
the cost landscape in panel A. . . . . . . . . . . . . . . . . . . . . . 136

5.4 Learning a fixed point firing rates in a one-dimensional linear
regression task under a learning rule derived from the lin-
earized re-parameterized model. A, B) Same as Figure 5.3C, D
except using the learning rule from Eq. (5.36). . . . . . . . . . . . . 139

5.5 Visualizing the cost landscape in a higher dimensional linear
regression task. A) The cost function J(W (t)) as a function of t
from Eq. (5.41). This represents the cost evaluated along five random
line segments in RN×N , each passing through W ∗ at t = 0. Two
blue dash lines show the stability boundary, |t| = 0.346. The vertical
axis is cut off at J = 1000 to better visualize the curves. Blue and
black circles show stable and unstable initial conditions used later for
learning. B) The cost function J(W (t1, t2)) from Eq. (5.42). This
represents the cost evaluated on a randomly oriented square with a
center at W ∗. The color axis is cut off at J = 1000. . . . . . . . . . 142

xii



5.6 Performance of three different learning rules for a linear re-
gression problem in many dimensions. Three different learn-
ing rules: ∆W i

1 (top row; A, B), ∆W i
2 (middle row; C, D), and

∆W i
3 (bottom row; E, F) applied to a linear regression problem in

N = 200 dimensions with m = 100 data points, so the system is over-
parameterized (N > m). In the left column (A, C, E) the initial W
was drawn from within the stability region (spectral radius < 1; blue
dot in Figure 5.5A). In the right column (B, D, F) the initial W was
drawn from outside of the stability region (spectral radius > 1; black
dot in Figure 5.5A). . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

5.7 Angles and correlations between weight updates for different
learning rules. A) Angle (θ12) between the weight updates for the
gradient-based and re-parameterized learning rules. B) Correlation
coefficient (ρ12) between the weight updates for the gradient-based
(∆W1) and re-parameterized (∆W2) learning rules. C-F) Same as A
and B, but for all other pairs of learning rules. . . . . . . . . . . . . . 149

5.8 Performance of three different learning rules for a linear re-
gression problem in many dimensions using an under-parameterized
model. Same as Figure 5.6, but for an under-parameterized model
with m = 500 > N = 200. The dashed red line indicates the true
minimum cost, J(W ∗). . . . . . . . . . . . . . . . . . . . . . . . . . 150

5.9 Training fixed point from RNNs for a categorical task A: Di-
agram of a RNN with MNIST-hand written digit inputs. B): Eigen-
values of the connectivity matrix, W in the network, same as in Fig-
ure5.1B. C: Sigmoidal function used as an “f-I” curve, f = tanh(I),
where G ̸= Id in Eq.2.22. D: Same as in Figure5.1D, except the input
is static image data. . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

5.10 Supervised linear learning of the fixed point firing rates on an
over-parameterized categorical task. A) Three different learning
rules: ∆W i

1 in Eq. (5.55) (top row; A, B), ∆W i
2 in Eq. (5.54) (middle

row; C, D), and ∆W i
3 in Eq. (5.56) (bottom row; E, F) applied to a

categorical MNIST benchmark problem in a linear network of N =
200 dimensions with m = 100 data points, so the system is over-
parameterized (N > m). The cost J(W ) is computed from the entropy
loss in Eq. (5.52) across 500 iterations. The left column (A, C, E) is
the training loss. Right Column (B, D, F)is the training error. . . . . 155

5.11 Supervised linear learning of the fixed point firing rates on the
under-parameterized categorical task. Same as in Figure 5.10,
except this is an under-parameterized system. . . . . . . . . . . . . . 156

xiii



5.12 Supervised learning of fixed point firing rates on a categorical
task using a rectified linear activation function on a support
set. Same as in Fig. 5.10, except using the rectified linear acti-
vation from Eq. (5.57). Specifically, A,B) applied the learning rule
from Eq. (5.58). C,D) used the learning rule from Eq. (5.60). E,F)
performs the learning update from Eq. (5.61) . . . . . . . . . . . . . . 160

5.13 Same as in Fig. 5.12 except this is an under-parameterized
system. With m = 500. . . . . . . . . . . . . . . . . . . . . . . . . . 161

5.14 Supervised learning of fixed point firing rates on a categorical
task using a sigmoidal activation function. Same as in Fig. 5.10
and Fig. 5.12, except using the tanh activation from Eq. (5.62). Specif-
ically, A,B) applied the learning rule from Eq. (5.64). C,D) used the
learning rule from Eq. (5.64). E,F) performs the learning update from
Eq. (5.65). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

5.15 Same as in Fig. 5.14 except this is an under-parameterized
system. With m = 500. . . . . . . . . . . . . . . . . . . . . . . . . . 165

xiv



TABLES

1.1 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

5.1 Runtime Learning Rule Comparison in Higher Dimensional Linear
Least Squares Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 148

5.2 Learning Rule Runtime and Error Comparison of a Categorical Task
via Linear Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

5.3 Learning Rule Runtime and Error Comparison of a Categorical Task
through ReLu Activation with Support Sets . . . . . . . . . . . . . . 159

5.4 Learning Rule Runtime and Error Comparison of a Categorical Task
through Tanh Activation . . . . . . . . . . . . . . . . . . . . . . . . . 163

xv



ACKNOWLEDGMENTS

I would like to first thank my advisor, Dr. Robert Rosenbaum, for showing his

passion for the field of computational neuroscience. His guidance in connecting inter-

disciplinary subjects led me to a new direction in machine learning, which embarked

on my journey of discovery. Thanks to his encouragement and support to actively

seek opportunities for me. I presented my work at conferences and took several ad-

vanced courses through Neromatch Academy for two summers. I would also like to

thank him for the computer that he invested in and has accompanied me every day.

I am very grateful to receive tremendous support from Dr. Rosenbaum, even dur-

ing the COVID-19 pandemic, our research discussions never stopped. In addition,

I am fortunate to have his wisdom and advice for my career development and job

applications.

I would like to thank the National Science Foundation, NeuroNex, and Air Force

Office of Scientific Research to fund my research within Dr. Rosenbaum’s Neural

Dynamics and Computing group at the University of Notre Dame. I would also like

to further thank my lab mates Dr. Cody Baker, Dr. Ryan Pyle, and Dr. Christo-

pher Ebsch for taking the lead and introducing me to many of our interesting group

discussions.

I would like to thank the graduate school and department of ACMS at Notre

Dame for selecting me as the Arthur J. Schmitt Presidential Leadership Fellowship

recipient for 5 years. I am grateful to serve as a Schmitt board member and get

involved in organizing many campus events to give back to our community. It has

been such a rewarding and enlightening experience.

xvi



I would like to thank many professors at Notre Dame for generously offering

their time and support in my graduate career by providing great resources, espe-

cially Dr. Allan Lindsay, Dr. Daniele Schiavazzi, Dr. Jonathan Hauenstein. They

have helped me gain the applied and computational knowledge in mathematics and

statistics, and continuously supported several of my grant applications. I would also

like to thank Dr. Francis Bilson Darku, Dr. Huy Huynh, Dr. Jennifer Waddell, and

Dr. Molly Walsh for their extraordinary support of my teaching practice at Mendoza

college of business for three years.

I would like to thank the incredible ACMS administrative staff, Kathy Phillips,

Melissa Ornat, and Nancy Hermanof for their amazing assistance in many aspects.

Their support have warmed my heart throughout the winter time here!

I would like to thank my colleagues, especially Adrian Navarro Hernandez, Bingyue

Su, Diana Morales, Jiacheng Zhang, Yihao Fang, and Yu Wang, at Notre Dame for

their companionship. We have taken many challenging classes and pulled all-nighters

together side-by-side preparing for our qualifying exams.

I would like to thank everyone who has talked to me during my undergraduate and

graduate education career, including my students, classmates, friends, and internship

managers. Those conversations we had have inspired my life experiences.

Finally, I would like to thank my lifetime friends, Grace Chen, Carole Sun, Yuan

Lam, Ana Wright, Dennis Wu, Eli Selkin, Eric Hranchak, and Prof. Ribeiro. I

always appreciate everything they share and all they have done to support my higher

educational journey.

xvii



SYMBOLS

a.k.a. also known as

ms milli-seconds

mV milli-Volts

Hz Herz, reciprocal of seconds

O.D.E. Ordinary Differential Equations

L(·) Loss, a function maps an event or more variables onto a real value

J(·) Cost, an average of the loss over the entire samples

xviii



CHAPTER 1

INTRODUCTION

This is the opening of our brain-modeling Odyssey!

The brain is a mass of nerve tissue that serves as a control system, the center of

the nervous system, and a powerful computing unit of an organism. Body movements,

memory, feelings, information processing, and problem-solving are all directly related

to the brain’s abilities of coordination and functioning. As a complex organ, the

human brain is made up of about 100 billion neurons. Neurons are the special

cells in the brain and function like the basic working units. They communicate with

each other in the brain regions (a.k.a. lobes, see Figure 1.1), and each region is

associated with certain operations such as emotions, speech, thinking, and learning.

Many of these cognition processes are triggered in the cortical area where neurons

are densely connected (Figure 1.1b). Understanding how the brain integrates neurons

within their domain regions and present operations is a fundamental and challenging

question in computational neuroscience.

1.1 A Brief History of A Brain-inspired Machine Learning Architecture

The structure and mechanism of how brains perform computations have inspired

scientists like Warren McCulloch and Walter Pitts, who built the first artificial

neural networks (ANNs) back in 1943 [89]. An ANN is a special type of com-

putational model in machine learning that uses neuron-like interconnected nodes to

flow information. As a computing system, ANNs have made great strides in their

ability to learn from past experience and their ability to solve difficult learning tasks

1



ba

Figure 1.1. Brain regions. a: Brain division. b: Cortical regions with
areas that are associated with several specific cognition tasks. Image is

taken from Google Search.

over the last decade. From speech recognition, and machine translation, to social

network filtering, these applications have become powerful tools and infiltrated into

our life experience in every aspect. Although the original goal of designing neural

networks was to solve problems in the same way that a biological brain would do,

there are stark differences between biological and machine learning, and ANNs remain

inferior to the brain at general intelligence and generalizing across tasks. Moreover,

biologically realistic computational models cannot perform well on non-trivial tasks.

The advances in artificial intelligence in recent years have motivated many neu-

roscientists to seek ways in which ANNs can be used to better understand the brain

and likewise, whether advances in neuroscience can inform the developments of im-

proved ANNs. While ANNs share some of their basic building blocks with cortical

neuronal networks in the brain, they differ in some fundamental ways. Although

there has been some work in linking biological and artificial neural networks, current

2



x y
h1 h2 hn

x(t) y(t)
h(t)

x y
h1 h2 hn

Multi-layered ffwd DNN RNN Multi-layered RNN

Figure 1.2. Neural network architecture in machine learning Left:
multi-layered feedforward networks (a.k.s DNN) are used to learn static
representations y = F (x). Middle: RNNs are used to learn functions

between time series, y(t) = F [x](t). Right: Multi-layered RNNs that is
cortical circuits alike and learn static functions as well as functions between

time series.

research that uses ANNs to model cortical circuits utilize either single-layer recurrent

neural networks (RNNs, Figure 1.2 middle) or multi-layered feedforward deep neural

networks (ffwd DNNs, Figure 1.2 left), whereas biological neuronal networks in the

cerebral cortex are multi-layered and recurrent (Figure 1.2 right). Hence, one major

direction of establishing direct, one-to-one analogues between artificial and biological

neuronal networks is through the recurrent network structure.

1.2 Recurrent Neural Networks (RNNs)

A neural network structure that not only processes the information in a forward

manner (see in Figure 1.2Left) but also allows the signal to loop back into the net-

work itself recurrently is called a recurrent neural network (a.k.s. RNN, see in

Figure 1.2Middle and Right). RNNs are both widely used in machine learning and

in computational neuroscience contexts.

1.2.1 Artificial Recurrent Neural Networks (ARNNs)

In machine learning, RNNs are a subclass of ANNs, and they are a type of neural

network structure where the output also feeds as input going into the same unit

recurrently (Figure 1.3). Unlike ANNs where the input and output are independent,

3



Figure 1.3. A single-unit RNN diagram. Left: a compressed unit.
Right: the unfolded version of the compressed unit. From bottom to top:
time series input Xt, hidden layer ht, and output Ot. U , V , and W are the
connectivity weights of the network. Image is taken from Wikipedia RNN

Search.

the “recurrent” motion breaks this independence and forces the input and output

to become dependent in RNNs. The most simple neural network structure is the

one-layer ANN (imagine there is no recurrent V connection in Figure 1.3 left), and

likewise, the simplest RNN has one single hidden layer with a feedback connection

architecture like in Figure 1.3 left or in Figure 1.2 middle. The “recurrent” feature

of RNNs can be viewed as a direct cyclic graph, which allows the output from some

nodes to influence back to themselves through subsequent of steps (a.k.a. hidden

layers). This ability of information revisiting through a sequence of hidden layers

gives RNNs the “memory” characteristic. Hence, RNNs can use these internal hidden

states to process and learn sequential input like text streams, audio or video clips,

and time series data (Figure 1.3 unfold part on the right). This learning through

time and dependent input neural network structure has demonstrated its advantages

in many engineering tasks such as language modeling, text generating, speech and

image recognition, machine translation, and all kinds of detection.

Apart from their ability for solving difficult tasks, RNNs in general are not con-

sidered as a biologically realistic model. For example, in this architecture, neurons do

4



not have any real biological meaning since unlike biological neurons, they are neither

excitatory nor inhibitory. These neurons are artificial and they are more like nodes

in the graph for a symbolic representation. The naming convention is inherited from

the architecture of interconnected neurons within a brain region. We refer to this

type of RNN as artificial RNNs (ARNNs, to distinguish it from a more biologically

realistic counterpart, BRNNs in 1.2.2), and we often use ARNNs in related to more

practical and technological applications.

1.2.2 Biological Recurrent Neural Networks (BRNNs)

In computational neuroscience, the brain can be divided into regions like in Fig-

ure 1.1. Neurons are the basic computational processing elements within these re-

gions, hence they have their real biological meaning. As a result, they can be classified

into distinct neuron types and release electrical and chemical molecules (a.k.a. neu-

rotransmitters) to affect others by either exciting or inhibiting adjacent neurons.

However, the cortical region of the brain is not simply arranged as confined layers

of neurons, so the recurrent connections in machine learning are not the same as

the notion of recurrence in the neuroscience literature. It is akin to the lateral con-

nections, meaning the interconnected neurons are in a localized region. In addition

to the feed-forward and lateral connections, the feedback signal is ubiquitous in the

brain, whereas it’s often absent in ARNNs (see Figure 1.4 as an example and compare

it to Figure 1.3 in Section 1.2.1). One reason may be related to the training diffi-

culties because ARNNs would need new learning rules other than gradient descent

back-propagation in order to obtain the same functionalities of feedback connections

that appear in the biological recurrent neuronal networks (BRNNs). In contrast, the

neuron responses in brain dynamics are often described by their firing rates using

ordinary differential equations, where some biological constraints are incorporated.

For example, the neuron synaptic strength constraint is based on the properties of

5



Figure 1.4. A 4-layered biological RNN. A biological RNN architecture
to model the visual cortex from Liao and Poggio’s experiments. The
network contains feed-forward connection (left-to-right), feed-back

connections (right-to-left) and lateral connections (looping back to same
area; synonymous with recurrent connections in ARNNs terminology). [54]

neurotransmitters, so models in BRNNs can provide a more realistic interpretation.

Although ARNNs and BRNNs share some structural similarities, computational

processing and training are very different. In ARNNs, each unit works synchronously

to process sequential data through gradient-based learning methods, whereas, in

BRNNs, neurons send their signals asynchronously. As a result, models in BRNNs

can handle information in a distributive and independent parallel way. Also, the

learning method in the human brain would be quantitatively more diverse than the

standard gradient descent back-propagation methods in ARNNs. Therefore, models

in BRNNs can perform more complex functions such as memory storing, winner-

take-all decision-making, and even for the learning of new tasks. Understanding and

simulating the same functionalities of the brain through BRNNs becomes a crucial

step in the development of ARNNs.

6



1.3 Overview and Contributions

In this thesis, I will address various differences and similarities between artificial

and biological neural networks in my research through model development, training,

and performing learning tasks in RNNs. I will show the connection between com-

putational neuroscience and machine learning through my work in neuron response

modeling, neuron plasticity, and the fixed point of recurrent dynamics learning in

RNNs. I will start with some basics in neural computations and biological spiking

models for a single neuron to a population of neurons; then introduce the mean-field

rate approximation and balanced network theory that are commonly used to model

cortical circuits. I will cover my work with theorems that characterize features of

cortical networks and can directly link to some machine learning activations. I will

further discuss my work on the prediction errors in unstructured neuronal networks

through homeostatic plasticity computations. Finally, I will present the fixed point

of recurrent dynamics learning performance in the BRNN learning algorithms that I

developed.

The topics included in this thesis are shown in table. 1.1. Chapter 2 provides the

necessary definition, biological background knowledge, and mathematical modeling.

Chapter 3 discusses the traditional balanced mean-field theory in detail and my work

toward its new extension. Chapter 4 describes the importance of network structure

for the success of learning predictive coding for non-trivial tasks with homeostatic

plasticity. Chapter 5 introduces a re-parameterized learning algorithm for training

the fixed points of RNNs and other alternative forms, which can be robust and com-

putationally efficient in compared to the traditional gradient-based learning methods.

Finally, Chapter 6 gives a summary and discussion of my future work directions.

7



TABLE 1.1

THESIS OVERVIEW

Chapter Contributions

3 Expand the traditional balanced network by introducing a “semi-
balanced” state and draw connections to machine learning activations.

4 Discuss whether or not the homeostatic plasticity can learn to compute
prediction errors in an unstructured network.

5 Develop two new BRNN learning algorithms for the fixed point of re-
current dynamics and demonstrate their learning capacities.

8



CHAPTER 2

BIOLOGICAL BASICS AND MATHEMATICAL MODELING

In this chapter, I will introduce the biological background of the brain and its

working element – the neuron, with a focus on the modeling of a single neuron to

multiple neurons, their communications through synapses, and responses within a

network.

As the main focus of this dissertation is from the perspective of mathematics and

computations for neuron dynamics, a very brief review of the brain structure and

how it is related to neurons’ activities is sufficient. I will leave exploring the vast

biological complexity of the brain on the side.

2.1 Biological Neurons

Neurons are the nerve cells living in the brain. They are the information carriers

that receive, process, and transmit electrical and chemical signals to other cells. There

are different types of neurons that vary in shape and functionalities. Depending on

their roles and locations (see Fig. 2.1a), we can have neurons that are classified

as unipolar, bipolar, or multipolar. We can also have neurons that are pyramidal

and Purkinje-like. However, they all share a common structure from the top down

contain a cell body (a.k.a. soma), an axon, and dendrites (see Fig. 2.1b). The cell

body contains the nucleus and specialized organelles where the genetic information

is located. Like any other cells in a body, soma is enclosed by a membrane that can

selectively stop the surroundings while passing the others. A neuron also contains

a tail-like axon where it connects the cell body to other neurons by a white fatty

9



a

b

Figure 2.1. Neuron shapes and its structure. a: Illustration of neuron
morphologies vary in size, shape, and location. b: The basic structure of a

neuron. Image is taken from Healthline Media:
https://www.healthline.com/

10



substance called myelin (white matter in the cortical region is “white” because of the

large quantities of myelinated axons). Myelin acts like an insulated coating which

is similar to the plastic rubber around the wire cord of a computer charger. The

fatty layer can protect the electrical energy from leaking, so it helps the axon send

electrical signals. Dendrites are responsible for receiving and detecting spikes from

other neurons. They are the information collectors and processors, so a neuron may

have more than one dendrite, like the branches of a tree.

Neurons process the information by sending electrical impulses and chemical sig-

nals via neurotransmitters throughout the brain. When a neuron receives electrical

excitation from other transmitting neurons, it causes the transmitting neuron to open

the neurotransmitter vesicle and release chemicals (a.k.a. neurotransmitters). Infor-

mation is transported along with the neurotransmitters traveling from the axon of

the transmitting neuron, across the tiny gap (a.k.a. synaptic cleft) between the ter-

minal to the dendrite of receiving neuron (Fig. 2.2). This process allows information

exchange and enables us to feel, think and move around.

There are some negative and positively charged ions in the interior and exterior

sides of the neuron membrane. Resting neurons are negatively charged from the in-

side out, and this difference between the electrical potentials across neuron membrane

is called membrane potential, often denoted as V . At a stable stage, the mem-

brane potential is around −70mV. Although the membrane itself is a blocker, the

membrane potential is controlled by the ions flowing, and this is further dependent

on the ion channels (a.k.a. ion pumps) located in the membrane. When neurons

receive stimulus from one end by an electrical or neurotransmitter activity, it also

creates a voltage change across their membrane. The release of neurotransmitters

may result in a positive increase (or negative decrease) in the electrical charge of a

receiving neuron, hence causing the membrane to be depolarized (or hyperpolarized).

In general, neurotransmitters follow Dale’s Law such that a neuron releases the same

11



Figure 2.2. Neuron communication diagram. First Neuron (a.k.a.
transmitting or presynaptic neuron). Second Neuron (a.k.a receiving or
post-synaptic neuron). The image is taken from a Google Image search.

neurotransmitter (either excitatory or inhibitory signal, see section 2.2.3) to the

receiving neurons.

Neurons communicate electronically through a synapse, an action potential

(a.k.a. spike) occurs when the incoming excitatory signals are sufficiently large and

result in the receiving neuron depolarization. After an action potential takes place,

it quickly moves to a resting stage because the ion channel cannot open again imme-

diately. This is called refractory period, and it usually takes about 1 ∼ms, which

allows enough time to initiate another action potential, and hyper-polarization may

happen during this time period. After a spike, the information is processed as the

electrical signal has passed through from the transmitting neuron to the receiving

neuron and reached its axon, where the vesicle is ready to release its neurotransmit-

12



ters to another targeting neuron. Hence, the term transmitting and receiving neurons

are relative to a particular synapse, since most neurons are both pre-synaptic and

post-synaptic.

Note that not every increase of electrical charge will result in an action potential

since the action potential is the result of very rapid changes in voltage when cross-

ing the neuron membrane, so the threshold is approximately −55mV. Also, stronger

stimuli will not result in the change of action potential in magnitude; instead, it will

result in multiple action potentials and affect the frequency, the sequence of a neu-

ron’s action potentials is called the spike train. We often use mathematical models

to study the neuron spiking activities, either a model to depict neuron membrane

dynamics, or a model to describe the frequency.

2.2 The Modeling Development of A Single Neuron

From a biological perspective, neurons communicate via synapses. This process

can trigger an action potential if the membrane potential voltage exceeds the thresh-

old level, and there is a refractory period after the spike where the neuron cannot

initiate another spike. Despite the biological complexity of a single neuron, we can

analyze the computational characteristics of a neuron since the information is en-

coded as spiking activities through time and frequency. This provides another scope

to understand brain dynamics, and from this perspective, we can also say that neu-

rons communicate primarily through spikes. To understand how the brain functions

in a more flexible and general sense, we need to use our mathematical modeling tool

for neuron dynamics.

2.2.1 Leaky Integrator Model

In 1907, Lapicque proposed a model to monitor membrane potential over time.

The goal is to measure the current, I(t), flow across the neuron membrane is related

13



to its voltage difference through a simple linear ordinary differential equation (ODE)

trajectory

I(t) = Cm
dV

dt
. (2.1)

Here, the neuron membrane is acting like a leaky capacitor, Cm (it is “leaky” because

the membrane is not a perfect insulator, the electrical charge will slowly leak). When

there is no current flow, the cell membrane is in a resting state (a.k.a. reversal

potential, denoted as EL). Typically in cortical neurons, EL ≈ −70mV . We can

approximate the leaky current around reversal potential by

IL = −gL(V − EL) (2.2)

where gL is the leak conductor that quantifies the resistant level of the membrane

from iron passing. Under the stimulation of an external current Ix(t), we can combine

Eq. 2.1 in an inward direction where the current is positive and Eq. 2.2 together to

obtain the Leaky Integrator model[27, 32]

τm
dV

dt
= −(V − EL) + Ix(t) (2.3)

where τm = Cm

gL
is a timescale constant for the membrane potential, and usually it

is around 5 ∼ 20ms. The analytical solution of this model contains an exponential

decay term, and this corresponds to the membrane potential dynamics eventually

back to the resting state. For a simple example, if we have a constant input (i.e.,

Ix = I0), and let V0 be the initial state, then the solution becomes V (t) = (V0 −

E0 − I0)e
−t/τm + (EL + I0). Although it depicts the membrane dynamics, it does

not capture action potentials. As mentioned in Section. 2.1, a spike is initiated if

V > −55mV threshold.

14



2.2.2 Exponential Integrate-and-Fire (EIF) Model

To improve the Leaky Integrator model in Section. 2.2.1 and include action po-

tentials, we can manually “record” the time, and send the membrane potential back

to the resting state Vre. Besides capturing the motion of action potentials, there is

another important part missing. Recall from section 2.1 that the spike is initiated

when there is enough electrical charge from the ions flow, and this is controlled by

the opening and closing of ion channels. The spiking activities only happen if the

membrane potential exceeds the threshold Vth. This part can be achieved by adding

an exponential term on top of the Leaky Integrator model from Section. 2.2.1. Hence

it is called Exponential Integrate-and-Fire(EIF) model.

τm
dV

dt
= −(V − EL) +De

V −VT
D + Ix(t)

if V (t) > Vth, record a spike at time t; then reset V (t)→ Vre.

(2.4)

The exponential term incorporates the influx of ion (specifically, sodium Na+) chan-

nels. VT acts like a sub-threshold, so VT < Vth. This is to ensure the opening of

sodium channels prior to the action potential, and this soft threshold is around −55

mV. Again, D ≈ 1 − 5 mV is the timescale factor, and note that when D → 0, the

EIF model is equivalent to the Leaky Integrator model in Eq. 2.3.

Section. 2.2.1 to 2.2.2 can be summarized by putting all the right-hand side of

the equations (Eq. 2.3 and Eq. 2.4) as a function of membrane potential,

dV

dt
= f(V ) (2.5)

where

f(V ) =
−(V − EL) +De

V −VT
D + Ix(t)

τm
. (2.6)

For simplicity, if we have a constant input Ix(t) = I0, then we can analyze the action

15



Figure 2.3. EIF model simulation. Top: a constant external input
injection. Middle: the membrane potential dynamics. Bottom: a spike

train simulation is to describe the middle plot.

16



potential via the fixed points (meaning no change in time, hence dV
dt

= 0) solution

from Eq. 2.5. When D is small, there are two fixed points solutions, near V = EL+I0

is the stable one and near V = VT is the unstable fixed point. That is to say if the

membrane potential is weak and not reaching the sub-threshold (V < VT ), then

there is no spike since it will converge to the stable fixed point at V = EL + I0. This

situation corresponds to the Leaky Integrator model that has no spike. However, if

the membrane potential exceeds the sub-threshold (V > VT ), then it will continue to

increase until it reaches the threshold Vth, hence producing a spike.

An increase in external current will push two fixed points towards each other until

they overlap, then eventually disappear since f(V ) > 0 as I0 → ∞. That is to say,

the membrane potential will exceed the threshold, then follow with a sequence of

spikes as discussed in Section 2.1, also see in Figure 2.3.

2.2.3 Synapses-Driven Model

Previously, the neuron spiking model is driven by an external stimulus as a form

of an electrical current. Neurons communicate through synapses, like the interactions

between two neurons presented in Figure 2.1. This indicates that a neuron spiking

model can be also driven by a stimulus current that is coming from another neu-

ron, and this is called the synapse-driven model. When a pre-synaptic neuron first

spikes (as a result of other driven forces), then its ion channel opens and releases neu-

rotransmitters, these chemicals cross the synaptic cleft and reach the post-synaptic

neuron. This process also brings a current to the post-synaptic neuron, so we called

it a post-synaptic current (PSC). PSC affects the membrane potential of the

post-synaptic neuron. Hence, every pre-synaptic neuron spike will result in a post-

synaptic potential (PSP) response. PSP gives a measurement of the connectivity

strength, which is associated with the pre-synaptic neuron.

Based on the results of synapse current, we can classify neurons as excitatory and

17



inhibitory. Excitatory neurons increase the likelihood that excites the post-synaptic

neuron to spike, whereas inhibitory neurons reduce the likelihood of spiking. There

are 80% expiatory neurons and 20% inhibitory neurons in the cortex. According to

Dale’s Law, all the post-synaptic neurons will inherit the same type of synapse, so

either excitatory or inhibitory. To model a current-based synaptic model, we need to

describe the synapse current as a sum of PSC (either EPSCs or IPSCs)

Ia(t) = Ja
∑︂
j

αa(t− taj ). (2.7)

Ja is the synaptic weight scalar which measures the strength of a synaptic current

(Je > 0 and Ji < 0). αa(t) is the PSC waveform. Since there is no post-synaptic

response prior to the pre-synaptic spike, so one can assume that αa(t) = 0 when

t < 0, and
∫︁∞
0

αa(t)dt = 1 when t > 0. We have a couple of options here to model

the waveform. A commonly used function to capture the smoothness “wave” (as a

production result from the chemical releasing components of the neurotransmitters)

is given by the exponential decay form described as

αa(t) =
1

τa
e−

t
τaH(t) (2.8)

where a = e, i. H(t) is the Heaviside function such that H(t) = 1 whenever t > 0,

and H(t) = 0 otherwise. To model the membrane potential of a post-synaptic neuron

in Figure 2.4, we can develop a synapse-current-based leaky integrator model, and it

is driven by two external neurons as

τm
dV

dt
= −(V − EL) + Isyn(t) (2.9)

where Isyn(t) = Ie(t)+Ii(t). For simplicity, one can model the synaptic current input

as a point process instead of a smooth “wave” form. Dirac delta function becomes

18



0 100 200
S

e

A

0 100 200
time (ms)

0

2

I e
 (m

V
)

B

0 100 200

S
i

C

0 100 200
time (ms)

2

0

I i 
(m

V
)

D

E

0 100 200
time (ms)

73

72

71

V
 (m

V
)

F

Figure 2.4. Leaky integrator Model driven by two pre-synaptic
neurons. A: excitatory spike train. B: excitatory synaptic current. C:
same as A and B, except for the inhibitory neuron. E: synapse diagram
with two Pre-synaptic neurons and one post-synaptic neuron. F: the

membrane potential dynamic of the post-synaptic neuron.

a natural choice for a form of αa(t) to model each spike. In this case, we ignore

the “wave” shape, and obtain a spike train, Sa(t), by adding all these Dirac delta

functions at each time point, tj, as

Sa(t) =
∑︂
j

δ(t− taj ). (2.10)

Spike train provides a new way to write the Eq. 2.7 in terms of convolution,

Ia(t) = Ja(αa ∗ Sa)(t). We can count the number of spikes in another way as

N(t1, t2) =
∫︁ t2
t1

Sa(t)dt, and this holds the same results as the usual counting method.

Within any time window (t1, t2), we can also easily get the frequency per unit in time

measurement, and this is called the firing rate (in Hz, meaning “number of spikes

per milli-seconds”),

r =
N(t1, t2)

t2 − t1
. (2.11)

The study of neuron firing rates gives us opportunities to understand its computa-

tional properties (i.e., mean, variance, etc.) as well as its biological characteristics.

19



The spike train in Figure 2.4A is a stationary process where the mean and variance

do not change over time. A Poisson process is frequently used to model a spike

train with this feature. The mean value of the spike count from a Poisson process is

well understood through the firing rate,

E[N(t1, t2)] =

∫︂ t2

t1

r(t)dt. (2.12)

Since the firing rate does not change, so r(t) = r0, then E[N(t1, t2)] = r0 ∗ (t2 − t1).

2.2.4 Mean-Field Theory

Model in Eq. 2.9 is not biologically realistic enough yet since the action potentials

of the post-synaptic neuron are not displayed. Moreover, a post-synaptic neuron in

reality receives many pre-synaptic neurons, and some are excitatory while others are

inhibitory (say Na for each, a = e, i). We can put them into a population and develop

a more biologically realistic EIF model as,

τm
dV

dt
= −(V − EL) +De

V −Vt
D + Ie(t) + Ii(t)

τe
dIe
dt

= −Ie + Je · Se(t)

τi
dIi
dt

= −Ii + Ji · Si(t)

if V (t) > Vth, record a spike at time t; then reset V (t)→ Vre.

(2.13)

Note that Ja and Sa are a vector of size Na. Figure 2.5 shows a similar characteristic

of the input synaptic neurons in comparison to Figure 2.4. For example, instead

of having a spike train for a single neuron, now we can produce roster plots for

each neuron group in the whole input neuron population. Moreover, the synapse

current, Isyn(t), in Eq. 2.9 now describes the total input from each neuron group as

Isyn(t) = Ie(t) + Ii(t).

20



When there is a population of neurons sending their synaptic currents, we can

perform some statistical analysis of these pre-synaptic neurons such as taking the

mean current over each excitatory and inhibitory group,

Īa = E[Ja · Sa] =
Na∑︂
j=1

E[Ja
j ∗ Sa

j (t)] = Ja · ra (2.14)

where a = e, i. The final equality follows from the expectation of the spike train

in a Poisson process is just the firing rate itself. If the neuron synaptic connection

within each group (either excitatory or inhibitory) have the same strength, (so for

all k ∈ a, Ja
k = ja and their firing rates are time-constant, hence they do not depend

on time, ra(t) = ra), then the Eq. 2.14 has a stationary mean value, Īa = Najara

(this value should fluctuate around the time-average input, dash line in Figure 2.5C,

E and G, Īa = lim
T→∞

1
T

∫︁ T

0
Ie(t)dt where Ie(t) represents a single trial). One can now

interpret the input currents as a combination of the mean current with some noises,

this is an illustration of mean-field theory (“field” is to specify a neuron group), the

membrane potential of the post-synaptic neuron can be described as

τm
dV

dt
= −(V − EL) +De

V −Vt
D + Īsyn + noise. (2.15)

Note that the noise term can evoke spiking activities especially when the mean input

is not so strong (see the spike around 380ms in Figure 2.5).

2.2.5 f-I Curve

On a detailed level, how does the mean input affect the firing rate of a post-

synaptic neuron? Since the stationary mean is related to the population size of the

pre-synaptic neurons, their synaptic strength, and their time-constant firing rate. If

keeping the incoming neuron size and presynaptic strength unchanged, while increas-

ing the excitatory firing rates in Figure 2.6 from A to B, we see that the post-synaptic

21



A

0 200 400 600
0

100
ex

c.
 n

eu
ro

n
in

de
x

B

0 200 400 600
0

25

I e
 (m

V
)

C

0 200 400 600
0

20

in
h.

 n
eu

ro
n

in
de

x

D

0 200 400 600

10

0

I i 
(m

V
)

E

0 200 400 600
time (ms)

50

0

V
 (m

V
)

F

0 200 400 600
time (ms)

0

20

I e
+I

i (
m

V
) G

Figure 2.5. EIF model driven by a population of pre-synaptic
neurons. A: synapse diagram with 100 Pre-synaptic excitatory neurons
and 25 inhibitory post-synaptic neurons. B: raster plots of pre-synaptic
excitatory neurons. C: mean value of excitatory pre-synaptic neuron

current. The dash line is the stationary mean. D, E: same as B and C,
except for the inhibitory pre-synaptic neurons. F: the membrane potential
dynamic of the post-synaptic neuron. G: the total synaptic input current

by summing C and E.

22



firing rate is also increasing in Figure 2.6C as blue dot to red dot. To be biologically

meaningful, neuron firing rates must be non-negative, so we can use a non-negative

and non-decreasing function to describe the relationship between the stationary mean

current input and the post-synaptic firing rate of a single neuron. This is called the

f-I curve, and it can be approximated as the following,

r ≈ f(Īsyn). (2.16)

It is often fitted with a threshold linear (a.k.a. rectified linear or Relu activation

in machine learning) function

f(Īsyn) = g[Īsyn − θ]+ (2.17)

where g > 0 is the gain, Īsyn = Nejere + Nijiri, and θ > 0 is the threshold such

that f(Īsyn) = 0 whenever Īsyn < θ, and f(Īsyn) = gĪsyn otherwise. Other choices of

the approximations are also possible such as using a hyperbolic tangent fitting or a

logistic transformation.

2.3 Modeling of A Network of Neurons

In previous sections, we studied the membrane potential of a single neuron and

its external input forms. Models like EIF and its variants are called spiking models

because they are designed to capture the action potential. We now extend these mod-

els to a group of post-synaptic neurons and study their biological and computational

properties. These neurons together with their pre-synaptic connections formed a

network. In graph theory, a network contains nodes and edges. Here, nodes are the

post-synaptic neurons, and edges are the information that flows into these neurons,

so either from outside of their own population or internal connections.

23



0 100 200 300 400 500 600

70

60

V
 (m

V
)

A

0 100 200 300 400 500 600
time (ms)

50

0

V
 (m

V
)

B

5 10 15
stationary mean input (mV)

0

25

50

ra
te

 (H
z)

C

Figure 2.6. f-I curve for an EIF driven by Poisson synaptic input..
A: Membrane potential of an EIF in a non-spiking regime. B: Membrane
potential of an EIF in the noise-driven regime. C: An f-I curve for an EIF.
The firing rate was plotted as a function of stationary mean synaptic input.
Varying Īsyn through re while keeping Na and Ja unchanged. The blue and
red dots correspond to the firing rate from A and B. Dotted green line is

the threshold linear fit of data.

2.3.1 Recurrent Network

In a more realistic setting, cortical neurons are recurrently connected since

they not only connect with neurons outside of the cortex but also receive signals

from nearby neurons in the same cortical layer (see Figure 2.7A). This self-supplied

synaptic current source can be described in the EIF spiking model as the following,

τm
dVa

dt
= −(Va − EL) +De

Va−Vt
D + Iae(t) + Iai(t) + Iax(t)

τb
dIab

dt
= −Iab(t) + JabSb(t)

ifVj(t) > Vth, record a spike at time t; then resetVj(t)→ Vre.

(2.18)

There are three current sources that contribute to the membrane potential dynamics

of each neuron in the network (namely the synaptic current, Isyn from excitatory and

inhibitory neurons, and the external stimulus Iax where a = e, i). Since the network

contains excitatory and inhibitory neurons, the second O.D.E. in Eq. 2.18, Iab(t) de-

24



scribes the synaptic input from population b to population a, hence it contains six

flows where a = e, i and b = e, i, x. Taking the expectation for each current dynamic,

we obtain the trial-average current over the population b, Īab = Nbpabjabrb. More-

over, from the network receiving side, the total trial-average flow into each population

is Īa = Īae + Īai + Īax.

Jab is the block-wise synaptic matrix form and it looks like,

J =

⎡⎢⎣Jee Jei

J ie J ii

⎤⎥⎦ .

Similar to earlier when we use Ja in Eq. 2.7 to describe the synaptic weight of a single

neuron. Now for a population of post-synaptic neurons in the recurrent network, we

can define a N×N matrix, J, where each entry Jab
jk measures the connection strength

between the pre-synaptic neuron k in population b = e, i to the post-synaptic neuron

j in population a = e, i. Specifically, the value of Jab
jk depends on the biophysical

type of the pre-synaptic neuron, not the distance to the targeting neuron. Hence, we

can use the Erdös-Renyi model to obtain

Jab
jk =

⎧⎪⎪⎨⎪⎪⎩
jab with probability pab

0 otherwise.

If Jab
jk = 0, meaning there is no connection from the pre-synaptic neuron k, this is

likely to happen with a probability of 1 − pa. In reality, most neurons in the cortex

are not connected, so we keep pa small to capture the sparsity of the cortical network

structure.

25



A

0 25 50 75 100
time (ms)

0

200

400

600

800

1000

x 
ne

ur
on

 in
de

x

B

0 25 50 75 100
0

1000

2000

3000

4000

e 
ne

ur
on

 in
de

x

C

0 25 50 75 100
time (ms)

0

10

20

30

e 
ra

te
 (H

z)

D

0 25 50 75 100
0

200

400

600

800

1000

i n
eu

ro
n 

in
de

x

E

0 25 50 75 100
time (ms)

0

50

100

i r
at

e 
(H

z)

F

Figure 2.7. EIF model in a recurrent network. A: the network scheme
with Nx = 1000 external neuron spikes using a Poisson process, and the
recurrent network contains Ne = 4000 excitatory neurons and Ni = 1000

inhibitory ones. B, C, and E: roaster plots of 100 neurons from each group.
D and F: trial-average firing rates of each post-synaptic neuron group and

their mean-field rates in dashed lines.

26



2.3.2 Connectivity

To absorb the information about the size of each pre-synaptic neuron population

and their connection strength, we now define a new N by N connectivity matrix

(a.k.a. weight matrix, later a.k.a. mean-field synaptic weight, or normalized mean-

field synaptic weight). Likewise, W also has a block structure where W ab
jk is of the

size Na ×Nb such that

W =

⎡⎢⎣W ee W ei

W ie W ii

⎤⎥⎦
The value W ab

jk represents the synaptic connection from the pre-synaptic neuron k

in population b = e, i to a post-synaptic neuron j in the population a = e, i of the

network. To connect with the synaptic weight matrix, Jab
jk described above, the value

of W ab
jk is therefore Nbjabpab since W ab

jk = NbE[Jab
jk ].

A biologically realistic W ab
jk is based on Dale’s Law, so it should not have columns

of the opposite sign, so either all “+”, or all “-” inclusive with 0s and looks like the

following,

W =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

+ + . . . − −

+ + . . . − −

. . .

+ + . . . − −

⎤⎥⎥⎥⎥⎥⎥⎥⎦
A spiking recurrent network is computationally expensive. Its memory and sim-

ulation run time grows like O(N2), since for each neuron there are two loops–one is

for the synaptic current update and the other one is for the membrane potential. To

study their spike activities, it is more efficient to study the firing rate directly with the

connectivity matrix instead of the rate records from the spiking model simulations.

27



2.3.3 Rate Model Approximations

To get the firing rate information of a network of neurons, besides modeling each

neuron’s membrane potentials and recording their spikes like in Eq. 2.18 systemati-

cally, it is often convenient to model their firing rate responses directly using the tool

of “f-I” curve and connectivity matrix. In a mean-field input approximation along

time, the average firing rate across the network population has an O.D.E. dynamical

trajectory like

τ
dr

dt
= −r+ f(Ī). (2.19)

This is the standard rate model form, where τ is a timescale constant that represents

the combined effect from the synaptic current and membrane potential dynamics in

Eq. 2.18. Using the rate model in Eq. 2.19 to describe the EIF spiking model in

Eq. 2.18, we have the firing rate dynamics for the recurrent network,

τ
dr

dt
= −r+ f(Wr+X) (2.20)

where τ is around 10 ∼ 50ms. where r =

⎡⎢⎣re
ri

⎤⎥⎦, W =

⎡⎢⎣Wee Wei

Wie Wii

⎤⎥⎦ , and X = Wxrx =

⎡⎢⎣Wexrx

Wixrx

⎤⎥⎦ . Since W is block-wised as mentioned before, we have the corresponding

mean-field synaptic connections, Wab = Nbjappab where a, b = e, i.

To explain the dynamical parts of this rate model, we need to understand the

stability concept through its fixed point. In other words, when the firing rates do

not change over time, the fixed point solution is when there are no dynamics dr
dt

= 0.

For example, the fixed point solution for Eq, 2.20 is

r = f(Ī) = f(Wr+X). (2.21)

28



In terms of computations, the rate model is better than the spiking model, and it

also provides a decent amount of neuron spiking accuracy. Figure 2.7D and F show

that the population-averaged but time-dependent firing dynamics generated from a

spiking EIF model in Eq. 2.18 eventually become stable and reach their mean-field

stationary rate approximations in dash lines.

One might wonder what if the fixed point of the firing rate model in the recurrent

network is not stable. It is useful to study the Jacobian matrix, Jac, of the rate

model in Eq. 2.21 as

Jac =
1

τ
[−I +GW ] (2.22)

where G = diag(f ′(Ī)) is a diagonal matrix with entries Gjj = f ′(Īj) for j identifies

the neuron j in the recurrent network, and f is applied to each neuron mean-current

input point-wise.

If all the eigenvalues of the Jacobian matrix, Jac, have a negative real part, then

the fixed point solution is stable. If our G = id in Eq. 2.22, this is also equivalent

to have the real part eigenvalue of W less than 1. Figure 2.8A, B, and C show

the two eigenvalues of the fixed points from Eq. 2.20 in the population level. Since

we have two groups (one for excitatory and one for inhibitory) within the recurrent

network, we have two eigenvalues. In general, we can also apply it to the neuron

level. Figure 2.8D, E and F present the 100 eigenvalues from another RNN with 100

neurons, and we see that it contains some unstable fixed points as some points are

outside of the stable bound (in red).

2.3.4 Balanced Network Theory

The computation time of an EIF spiking simulation in a recurrent network of the

size N = 5000 (Ne = 4000, Ni = 1000) in Figure 2.7 takes more than 2 minutes in a

regular computer. In reality, the cortical area contains much more neurons than the

29



A

2 1 0 1 2
real( ) of J

0.4

0.2

0.0

0.2

0.4

im
ag

(
) o

f J

B

1000 750 500 250 0
real( ) of W

4000

2000

0

2000

4000

im
ag

(
) o

f W

C

D

2 1 0
real( ) of J

1.5

1.0

0.5

0.0

0.5

1.0

1.5

im
ag

(
) o

f J

E

1 0 1
real( ) of W

1.5

1.0

0.5

0.0

0.5

1.0

1.5

im
ag

(
) o

f W

F

Figure 2.8. Stability of the fixed point in RNNs. A: BRNN in
Section 2.3.1 under EIF model simulations and using a mean-field

approximation of rate model in Eq. 2.19 with τe = 40ms and τi = 20ms to
obtain population firing rates. B: the eigenvalue of the Jacobian matrix

plot, Re{λ(Jac)} < 0, so A has stable fixed points for each population. C:
Same as in B, except for the weight matrix, W . A, B, and C are the
population level. D: an RNN network with a size of N = 100 neurons

directly under the rate model simulations. E, and F: same as in A, B, and
C, except RNN contains some unstable fixed points for individual neurons
in D, they are points on the right side of the zero bar in E and outside of
the unit circle in F. D, E, and F are the neuron level, where W is generated

from a random matrix.

30



5000 simulations (imagine the computation difficulties since the brain has 100 billion

neurons). What happens to this network when the size increases? Of course, the

mean-field synaptic weight Wab should not go to infinity, and this implies that jab

and pab need to carefully scale in order to keep the network in a “balance” mode. In

fact, in Figure 2.7D and F, we have seen an example of “balance” when the excitatory

and inhibitory firing rates reach to their stationary state, ra ∼ O(1), where a = e, i.

The balanced network theory is to study the excitatory and inhibitory “balanced”

through some cancellations between their positive and negative input sources.

The mean-synaptic input of a recurrent network in a rate model (see Eq. 2.21)is

Ī = Wr + X ∼ O(NpJ). Within each population, the firing rate is assumed to be

ra ∼ O(1) where a = e, i. Since the “f-I” curve is the approximation of the firing

rate through the network mean total current input (r = f(Ī)), it tells us to keep

the mean-field total input still while increasing the network size N , so Ī ∼ O(1) as

N → ∞. This implies that we either have sparsely coupled networks such that

the connectivity probability between one neuron population to another population

must be small, like pab ∼ O( 1
N
), or the weakly coupled networks where the

synaptic connection strength between neuron types are small (like jab ∼ O( 1
N
)).

This is equivalent to saying that the network size does not change the mean current

input, but the spread of neurons.

In a weakly coupled network, the variance of each synaptic input is in an order

of O(Nbpabj
2
abrb). It would vanish as the network grows, since V ar(Iab) ∼ O( 1

N
)).

This indicates that the pre-synaptic neurons are uncorrelated and hence no spike

train in a large network limit. However, studies have shown that this is inconsistent

with real neuron recordings [82, 83]. Other scientists proposed that the synaptic

strength should scaled like jab ∼ O( 1√
N
) with pab ∼ O(1). This scaling is to have

a non-vanishing variance and makes it biologically realistic, so it is called strongly

coupled networks. If we work with this scaling scheme, it implies that the mean

31



total inputs would be in the order of
√
N , since each means synaptic current input

has the expression Īab = Wabrb = Nbpabjabrb ∼ O(
√
N). However, the original

assumption is that the total mean current is moderate, Ī ∼ O(1). This implies that

there must be some cancellations to compensate for that.

We first defined a normalized mean-field synaptic weights as W̃ab =
Nbpabjab√

N
,

where a = e, i and b = e, i, x, then each mean current input is Īab =
√
NW̃abrb ∼

O(
√
N) since W̃abrb ∼ O(1). In order to achieve a moderate total mean current

input, Ī ∼ O(1), cancellation must exist when combining these terms. Specifically,

this implies that the network can receive strong synaptic input from each input

source.

In another scope, the notion of “balance” can be viewed from the cancellation of

the “local” recurrent network term, W̃r and the scaled external input term, X̃ such

that

W̃r+ X̃ ∼ O( 1√
N
) (2.23)

In a large network limit, N →∞, Eq. 2.23 becomes

lim
N→∞

W̃r+ X̃ = 0 (2.24)

We can rearrange terms and solve for the firing rate solution under the existence of

W̃−1,

lim
N→∞

r = −W̃−1X̃. (2.25)

Since the network must be finite, N < ∞, so we can write the firing rates as an

approximate, r ≈ −W̃−1X̃. Note that in general, the external stimulus, X̃ is positive,

so it is equivalent to having another excitatory neuron group. Biologically, the firing

rate must be positive, r > 0, this indicates that W̃r < 0, so the recurrent part of this

network is inhibitory.

32



50 100 150 200 250
time (ms)

-50

0

50

C
ur

re
nt

s(
m

V
/m

s)

Mean Current Input

Iee+Iappe
Iei
Itotal

50 100 150 200 250
time(ms)

0

10

20

30

ra
te

(H
z)

Firing Rate

e
i

Figure 2.9. E-I Balanced in a recurrent network simulated from an
EIF spiking model. Top: mean current input into excitatory (in red,

positive) and inhibitory (in blue, negative) population within the recurrent
network. The mean total input (in black) is the summation of all the

inputs, and it is bouncing around 0. Bottom: trial-average firing rates (in
solid colored lines) for each neuron population and their stationary

mean-field rates (in dashed colored lines).

33



Despite the “local”-external balance for the recurrent network, one can also sepa-

rate the mean total input current as excitatory (Īae+ Īax) and inhibitory (Īai) compo-

nents. While each mean current input source is strong, Īab ∼ O(
√
N) where a = e, i

and b = e, i, x, the average current flows to the excitatory and inhibitory population

within the recurrent network is still moderate, Īa = Īae + Īai + Īax ∼ O(1). We

must have some cancellations to achieve the excitatory-inhibitory balance when

adding these current sources. Figure2.9 demonstrates that even though the individ-

ual current source is strong, the total mean current input remains at zero. Notice

that the balanced network theory and the “f-I” curve both model the mean-field

approximations of the firing rates, but these two do not rely on each other.

2.4 Modeling Through Synaptic Plasticity and Learning

So far, we have shown models for a single neuron and their extension to a network

of neurons. We have seen spiking models like EIF that can capture the membrane

potential for a single neuron as well as multiple neurons in the mean-field approxima-

tion level. In addition, we were able to use the “f-I” curve and rate model dynamics

to describe the firing rate responses in a relationship with mean total current inputs

in recurrent networks. Furthermore, the stability analysis of the fixed point solutions

from firing rate dynamics gives us another scope to understand the importance of

neuron synaptic strength and the firing rate time scale. Notice that these models

are for the purpose of either portraying a phenomenon of cortical neurons, like the

spiking behavior, or describing a relationship between two quantities, like firing rate

responses and mean current inputs. On a bigger scale, what if we want the brain

actually “do” something? For example, can it identify an object or learn something

new? In this section, we focus on building BRNN models for the purpose of “solving”

some tasks.

34



2.4.1 Synaptic Plasticity

Many things change and evolve with time! In neural activities, synaptic plastic-

ity happens when the strength of neuron synapses changes (∆J). The strengthening

of synaptic connectivity is called facilitation while weakening is called depression

over time. These changes can happen instantaneously (a.k.a. short-term plasticity)

or over a lengthy period of time (a.k.a long-term plasticity). In particular, long-term

plasticity is associated with the learning and memory mechanism in the brain.

Among all the types of plasticity rules, hebbian plasticity (named after Don-

ald Hebb) is the most widely studied and well-known type of long-lasting activity

changes in synaptic strength. The main idea of the Hebbian principle states that

the magnitude of an increase in synaptic strength is proportional to the firing rates

of pre-and post-synaptic neuron pairs [38]. This is often described as “neurons that

fire together, wire together.” Specifically, if there is an increase in the firing rate of

pre-synaptic neuron k and resulting the post-synaptic neurons j spiking more often

as well, then their synaptic connectivity Jjk will get stronger. Hence, to translate the

Hebbian plasticity rule directly, we have

dJjk
dt

= crjrk (2.26)

where c is the scale constant. However, Eq. 2.26 indicates that synaptic strength

dynamics can grow infinitely, and this is certainly not biologically realistic because it

leads to instability. In many contexts, the inhibition can stabilize recurrent networks,

so we introduce a model with homeostatic inhibitory synaptic plasticity (ISP)

that stabilizes our BRNNs. This model focuses on the synaptic strength dynamics

of a single excitatory neuron e. It receives synaptic input from another inhibitory

neuron i with the synaptic strength Jei < 0 (since this synapse strength source is

35



coming from inhibitory) such that

dJei
dt

= −η [(ye(t)− 2ro) ∗ Si(t)− Se(t) ∗ yi(t)]

τy
dya
dt

= −ya(t) + Sa(t)

(2.27)

where η is the learning rate that controls how quickly the synaptic strength Jei

changes, and r0 > 0 is the target rate for neuron e. We define the synaptic

trace as ya(t), with a = e, i representing a single neuron, to measure the running

estimates of the neuron firing rates. τy is the timescale constant for the synaptic trace

dynamics. Sa(t) is a spike train with two values (0 or 1), and it is modeled from a

Poisson process with the mean-field firing rate ra, Jei gets updated only after a spike

either from neuron e or neuron i. For example, Figure 2.10 depicts the changes in

synaptic strength between a pair of pre-and post-synaptic neuron spikes. If neuron i

spikes at time tpre, so Si(tpre) = 1, then Jei is reduced by 2ηr0 amount because there

is no spike for the post-synaptic neuron e yet at the time of tpre, so ye(tpre) = 0, hence

Se(tpre) = 0. Similarly, if neuron e spikes at time tpost > tpre, then Jei is changing

by −ηyi(tpost) quantity (since Se(tpost) = 1). Notice that Jei < 0, so the “-” sign

is pushing the Jei dynamics more negative (inhibition), hence the synaptic strength

gets stronger.

Figure 2.10C shows that the ISP rule is time-dependent. In general, plasticity

rules that rely on the pre-and post-synaptic neuron pair spike time are called spike

time-dependent plasticity (STDP) rules. To understand the effect of time evolu-

tion on synaptic strength, let us focus on the moment of tpost > tpre (since tpre already

happened). Notice that the second O.D.E. in Eq. 2.27 has an analytic solution as an

exponential decay after the pre-synaptic neuron i spikes, so the trace of inhibitory

neuron has the expression, yi(tpost) =
1
τy
e
− tpost−tpre

τy . According to the ISP rule, when

neuron i spikes, it contributes to the change of synapse for the post-synaptic neuron

e by ∆Jei = 2ηr0 amount. Since the pre-synaptic neuron i spike also leads to the

36



A B

1000 400 0 400 1000
t (ms)

0

J e
i

C

Figure 2.10. ISP from an inhibitory neuron to an excitatory
neuron A: diagram of a synaptic neuron pair from inhibition to excitation.
B: the spike time delay, ∆t, between two spikes. C: the change of synaptic

strength, ∆Jei, as a function of ∆t.

post-synaptic neuron e spikes, so neuron e itself also contributes ∆Jei = −ηyi(tpost)

amounts. Hence, the total update in synaptic strength for neuron e looks like

∆Jei = 2ηr0 −
η

τy
e
− tpost−tpre

τy (2.28)

Now the next stage is when neuron e becomes a new spiking pre-synaptic neuron,

then following the same logic, we have ∆Jei = 2ηr0 − η
τy
e
− tpre−tpost

τy . Combine above

equations all together, we have

∆Jei = 2ηr0 −
η

τy
e
− |∆t|

τy (2.29)

where ∆t = tpost − tpre is the time delay between a pre-synaptic neuron spike and

a post-synaptic neuron spike. In a more realistic setting, we can transfer the STDP

rule for a single neuron to a recurrent network under the EIF spiking model that we

37



discussed in Section 2.3.1, and Eq. 2.18 can be developed as

τm
dVa

dt
= −(Va − EL) +De

Va−Vt
D + Iae(t) + Iai(t) + Iax(t)

τb
dIab

dt
= −Iab(t) + JabSb(t)

ifVj(t) > Vth, record a spike at time t; then resetVj(t)→ Vre.

τy
dya

dt
= −ya(t) + Sa(t)

dJei

dt
= −η

[︂
(ye(t)− 2ro)

[︁
Si(t)

]︁T − Se(t) [yi(t)]
T
]︂
◦ Ωei

(2.30)

where Ωei is an indicator matrix with entries valued at either zero or one as the

following,

Ωei
jk =

⎧⎪⎪⎨⎪⎪⎩
1 when there is an initial connection Jei

jk(0) ̸= 0

0 otherwise

.

Here, ◦ means matrix element-wise multiplication and indicates that the update only

applies to the neurons that actually have connectivity strengths with other neurons

within this recurrent network.

Next, we want to use the knowledge from mean-field theory to explain and ap-

proximate the firing rates generated from the EIF spiking model in Eq. 2.30 in the

dynamical rate model from Eq. 2.20by including the weight updates as

τ
dr

dt
= −r+ f(Wr+X)

dwei

dt
= −ηr(re − r0)ri.

(2.31)

Again, the connectivity entry wei absorbs the synaptic strength Jei since in sec-

tion 2.3.2. In a homogeneous setting, the connectivity matrix entry for recurrent

networks is wei
jk = NiE[Jei

jk] = NiJeipei. Hence, the corresponding learning rate would

be ηr ∝ Nipeiη. Moreover, the expectation of trace is the same as the spiking target

38



A

0 500 1000 1500 2000
time (ms)

0

5

10

15

20

ra
te

 (H
z)

B re

ri

r0

0 500 1000 1500 2000
time (ms)

0

5

10

15

ra
te

 (H
z)

C

Figure 2.11. ISP under an EIF spiking model in a recurrent
network A: diagram of a recurrent spiking network using the same

parameter setting as in Figure 2.7. B: firing rates of dynamics from the
EIF spiking model evolves through ISP: the inhibitory firing rate (in blue)
pushes the excitatory firing rates (in red) towards its target rate (in black,

r0. C: a mean-field approximation rate model of B.

rate, ra (= E[Sa(t)] = E[ya(t)]) where a = e, i. If we solve the weight dynamics

O.D.E. in Eq. 2.31 for the fixed point solutions, then we must either have re = r0

or ri = 0 (note that this is not possible since the inhibitory neurons initiate the

spikes). Therefore, under stability conditions, re always reaches its target rate at r0

here through ISP.

2.4.2 Learning

Learning can be a response to the change in synaptic strength. Through ISP in

Section 2.4.1, our recurrent network “learns” to approach its target rate in the EIF

spiking model as well as the mean-field approximated rate model. Although learning

to reach a constant value is rather a simple task, the complex brain can obviously

solve more difficult tasks in a real-world setting.

In the following chapters, we develop and present more complex tasks that our

39



models in BRNNs can “do”. Some of our models are more biologically plausible

such as spiking models with ISP, while others focus on neural activities which can

be replaced by using the mean-field approximations of the rate models. Moreover,

some models that we designed can identify objects, while others can detect errors.

Furthermore, to link with ARNNs in machine learning, we also compare the learn-

ing tasks’ performance through algorithms that are inspired by ARNNs such as the

gradient-based method with our newly developed learning rules.

Let us go to the Odyssey of brain-learning chapters!

40



CHAPTER 3

UNIVERSAL PROPERTIES OF STRONGLY CONNECTED NETWORKS

This chapter is partially adapted from [10].

One fundamental difference between BRNNs and most computational models is

that cortical networks in the brain are multi-layered and recurrent (like what we see

in section 2 Figure 1.2, right or Figure 1.3), while most computational models are

either multi-layered or recurrent (Figure 1.2, left and middle). The cerebral cortex

uses multiple layers of locally recurrent layers to process both dynamic and static

stimuli. These observations raise the following question: How does the recurrent,

intralaminar connectivity of cortical circuits shape their representation of stimuli?

This question has been approached using a wide variety of different computational

models such as rate models Eq. 2.19 in section 2. A mean-field approach with a

proper scaling technique can produce asynchronous-irregular activity and support

excitatory-inhibitory balance theory, which has also been widely observed in cortical

recordings.

In Dr. Rosenbaum’s neural dynamics and computing lab with a former Ph.D.

student Dr. Baker, we showed that partial breaks in excitatory-inhibitory balance

produce a characteristic non-linear relationship between the total current input and

fixed points of the firing rate dynamics. Specifically, I formalized the features of

cortical networks into mathematical assumptions and proved several theorems. This

work presents the nonlinear stimulus representations and nonlinear computations,

which are unavoidable in networks driven by multiple stimuli. These theorems are

also consistent with real cortical recordings from experiments, and have a direct

41



mathematical relationship to ANNs in machine learning.

3.1 Introduction

An approximate balance between excitatory and inhibitory synaptic currents is

widely observed in cortical recordings [1, 11, 28, 36, 63, 95]. How do this balance shape

neural computations and stimulus representations? This problem is often studied

using computational models of neuronal networks in a dynamically balanced state.

Despite the complexity of spike timing dynamics in the models of a dynamically stable

balanced state, their population level firing rates [29, 52, 72, 82, 83] and correlations

[25, 26, 39, 71, 73, 93] in response to given stimulus can be derived using a simple

mean-field theory from Section 2.3.3. In this section, We address these problems with

balanced network theory by developing a theory of semi-balanced networks that

quantify network responses when the classical balanced network state is broken.

The classical theory of balanced networks has several shortcomings. First, it

predicts a linear relationship between stimuli and neural population responses, in

contrast to the nonlinear computations that must be performed by cortical circuits.

Secondly, parameters in balanced network models must be chosen so that the firing

rates predicted by balanced network theory are non-negative. In the widely studied

case of one excitatory and one inhibitory population, parameters for network con-

nectivity and external input must satisfy only two inequalities to achieve positively

predicted rates[39, 83]. However, strictly positive predicted rates can be more difficult

to achieve in networks with several populations such as multiple neuron subtypes,

neural assemblies, or tuning preferences [52, 67]. This difficulty occurs because the

proportion of parameter space for which predicted rates are non-negative becomes

exponentially small with an increasing number of populations. Moreover, a given

network architecture might produce a balanced state for some stimuli, but not oth-

ers. Indeed, we show that for any network architecture satisfying Dale’s law, there

42



are infinitely many excitatory stimuli for which balanced network theory predicts

negative rates, implying that any network structure admits stimuli that break the

classical balanced state.

In the semi-balanced state, balance is only enforced in one direction: neurons

can receive excess inhibition, but not excess excitation. Neurons receiving excess

inhibition are silenced and the remaining neurons form a balanced sub-network. We

show that semi-balanced networks implement nonlinear stimulus representations and

computations. Specifically, we establish a mathematical relationship between semi-

balanced networks and ANNs used for machine learning [34], as well as threshold-

linear networks studied for their rich dynamics [23, 24, 35, 94]. We show that semi-

balance, but not balance, is naturally realized at a neuron-by-neuron level in networks

with homeostatic inhibitory plasticity [40, 84]. In this setting, semi-balanced net-

works have extended the traditional notion of excitatory-inhibitory balance in which

BRNNs implement high-dimensional, richer, and nonlinear stimulus representations.

In summary, in contrast to the classical balanced state, the semi-balanced state is

realized naturally in networks with time-varying stimuli, produces nonlinear stimulus

representations, and has a direct correspondence to ANNs used in machine learning.

The theory of semi-balanced networks, therefore, has extensive implications for un-

derstanding stimulus representations and computations in cortical circuits.

3.2 Spiking Network Model Descriptions

We consider a recurrent network of N = 3 × 104 (80% excitatory and 20% in-

hibitory neurons altogether) randomly connected adaptive EIF neuron models. We

chose the adaptive EIF neuron model because it is simple and efficient to simulate

while also being biologically realistic [16, 44]. This current-based model used in all

43



figures, and the membrane potential of neuron j = 1, . . . , Na in population a obeyed

τm
dV a

j

dt
= −(V a

j − EL) +DT e
V a
j −VT
DT − w + Iaj (t)

τw
dwa

j

dt
= −wa

j

(3.1)

with the added condition that each time V a
j (t) crossed Vth = 0mV, a spike was

recorded, it was reset to Vre = −72mV, and wa
j was incremented by B = 0.75mV.

A hard lower bound was imposed at Vlb = −85mV. Other neuron parameters were

τm = 15ms, EL = −72mV, DT = 1mV, VT = −55mV, and τw = 200ms. The input

was given by

Iaj (t) =
∑︂
b

∑︂
k

Jab
jk

∑︂
n

αb(t− tbk,n)

where tbk,n is the nth spike of neuron k in population b and αb(t) =
e
− t

τb

τb
H(t) is an ex-

ponential postsynaptic current with H(t) the Heaviside step function. Synaptic time

constants, τb, were 8/4/10ms for excitatory/inhibitory/external neurons. Synaptic

weights were generated randomly and independently by

Jab
jk =

⎧⎪⎪⎨⎪⎪⎩
jab√
N

with probability pab

0 otherwise

The network receives feedforward synaptic input from two external populations of

Poisson processes, modeling external synaptic input in Figure 3.1a. The firing rates,

rx = [rx1, rx2]
T , of the external populations form a two-dimensional stimulus space

(Figure 3.1b vT denotes the transpose of v).

3.2.1 Simulations of An Adaptive EIF Model

In Figure 3.1 and 3.2, external input rates were rx = [15, 15]THz for the first

500ms and rx = [15, 30]THz for the next 500ms.

44



Figure 3.1. Balanced and Semi-balanced States a: Network Diagram.
A recurrent spiking network of N = 3× 104 model neurons is composed of
two excitatory populations (e1 and e2) and one inhibitory population (i)
that receive input from two external spike train populations (x1 and x2).
b: The two-dimensional space of external population firing rates represents

a stimulus space. The filled triangle and circle show the two stimulus
values used in d the first half of 500ms and the second half of 500ms

correspondingly. c: Raster plots of 200 randomly selected spike trains from
each population for two stimuli, and below is the membrane potential of
one neuron from population e1. d: Mean input current to population e1,
e2, and i from all excitatory sources (e1, e2, x1, and x2; red), from the
inhibitory population (i; blue), and from all sources (black) showing

approximate excitatory-inhibitory balance across stimuli in the first half of
500ms. With excess inhibition in the second half of 500ms, the semi-balance

state shows that e2 and i population form a balanced sub-network.

45



In Figure 3.1 and 3.2, postsynaptic populations were a = e1, e2, i and pre-synaptic

populations were b = e1, e2, i, x1, x2 with Ne1 = Ne2 = 1.2 × 104, Ni = 6000, and

Nx1 = Nx2 = 3000 so that N = Ne1 + Ne2 + Ni = 3 × 104. Neurons in external

populations, x1 and x2, were not modeled directly, but spike times were generated

as independent Poisson processes with firing rates rx1 and rx2. Connection strength

coefficients were jejek = 0.375, jeji = −2.25, jiek = 1.70, jii = −0.375, jejxk=2.70,

jixk = 2.025mV/Hz for j, k = 1, 2. Note that these were scaled by
√
N to get

the actual synaptic weights as defined above. Note that some balanced network

studies scale weights by
√
K instead of

√
N . Since we keep connection probabilities

fixed, K ∼ N , so scaling by
√
N is equivalent to scaling by

√
K. This choice of

synaptic weights produced postsynaptic potential amplitudes between 0.07mV and

0.8mV. Connection probabilities in Figure 3.1 and 3.2 were pe1e1 = pe2e2 = 0.15,

pe1e2 = pe2e1 = 0.05, pe1x1 = 0.08, pix1 = pix2 = 0.12, and pab = 0.1 for all other

connection probabilities.

3.2.2 Simulations with Inhibitory Plasticity

For Figure 3.3, the model was the same as above except there was just one exci-

tatory, one inhibitory, and one external population with Ne = 0.8N and Ni = Nx =

0.2N whereN = 3×104. Stimulus coefficients in Fig 3B were set to σ1 = σ2 = 22.5mV

(about 1.4 times the rheobase) for the first 80s and randomly selected from a uni-

form distribution on [−30, 30]mV for the last 40s. Connection probabilities between

all populations in Figure 3.3 were pab = 0.1. Initial synaptic weights were given by

jee = 37.5, jei = −225, jie = 168.75, jii == 375, jex = 2700, and jix = 2025mV/Hz

as above. Only inhibitory weights onto excitatory neurons (jei) changed, all others

were plastic.

The inhibitory plasticity rule was taken directly from previous work [84]. The

variables, xa
j (t) represent filtered spiking activity and are defined by τx

dxa
j

dt
= −xa

j

46



with the added condition that xa
j (t) was incremented by one each time neuron j

in population a = e, i spiked. After each spike in excitatory neuron j, inhibitory

synaptic connections onto that neuron were updated by ∆Jei
jk = −ηxi

k(t) for all non-

zero Jei
jk. After each spike in inhibitory neuron, k, its outgoing synaptic connections

were updated by ∆Jei
jk = −η(xi

k(t) − α). We used τx = 200ms and α = 2 to get a

“target rate” of rte =
α
2τ

= 5Hz.

3.3 Linear Representations in Balanced Networks

To review balanced network theory from Section 2.3.4 and its limitations, simu-

lations in Figure 3.1C of this model showed asynchronous-irregular spiking activity

and excitatory-inhibitory balance. How does connectivity between the populations

determine the mapping from the stimulus, rx, to firing rates, rx = [re1, re2, ri]
T in

the recurrent network? Firing rate dynamics in Eq. 2.21 can be approximated using

models of the form

τ ṙ = −r+ f(JK[Wr+X]) (3.2)

where ṙ denotes the time derivative, f is a non-decreasing f-I curve, and W is the

effective recurrent connectivity matrix. External input is quantified by X = Wxrx.

Components of W is given by wab = JabKab

JK
where Kab is the mean number of con-

nections from population b to a and Jab is the average connection strength. The

coefficient, JK = average(|Jab|Kab), quantifies coupling strength in the network.

Since JK is multiplied in the equation for ṙ and divided in the equation for wab,

it does not affect dynamics but serves as a rotational tool in the calculation below,

which require JK ∼ JabKab so that wab ∼ O(1) even when JabKab is large.

The key idea underlying balanced network theory is that JK is typically large

in cortical circuits because neurons receive thousands of synaptic inputs and each

47



postsynaptic potential is moderate in magnitude. Total synaptic input

I = JK[Wr+X] (3.3)

can only remind O(1) if there is a cancellation between excitation and inhibition. In

particular, to have I ∼ O(1), we must have Wr+X ∼ O( 1
JK

), so in the limit of large

JK, firing rates satisfy

r = −W−1X (3.4)

In classical balanced network theory, one considers the N →∞ limit while taking

Jab ∼ 1/
√
N and Kab ∼ N so that JK → ∞ and Eq. 3.4 is exact in the limit [83].

Experimental evidence for this scaling has been found in cortical cultures [11]. Note

that while Eq. 3.2 is a heuristic approximation to spiking networks, the conclusion

that Eq. 3.4 must be satisfied to keep I ∼ O(1) as JK → ∞ does not depend

on the approximation in Eq. 3.2, but is implied by Eq. 3.3 alone and is therefore

mathematically valid for spiking networks [83] for which firing rates can depend on

the variance, and higher order moments of neurons’ synaptic input. Even though

it is derived as a limit, Eq. 3.4 provides a simple approximation to firing rates in

networks with finite JK. Indeed, it accurately predicted firing rates in our spiking

network simulations for which JK = 5.9 mV/Hz.

While the simplicity of Eq. 3.4 is appealing, it linearly reveals a critical limitation

of balanced networks as models of cortical circuits: Because r depends linearly on X

and rx, balanced networks can only implement linear representations of stimuli and

linear computations [2, 29, 83].

To demonstrate this linearity in our spiking network, we sampled a lattice of points

in the two dimensional space of rx = [rx1, rx2]
T values and plotted the resulting neural

manifold traced out in three dimensions by r = [re1, re2, ri]
T . The resulting manifold

is approximately linear, i.e., a plane in Figure 3.2b because r depends linearly on

48



Figure 3.2. Firing Rates Representation in Balanced and
Semi-balanced Networks a: Network Diagram, same as in Figure 3.1
except included a linear readout R output. b: top is the neural manifold
traced out by firing rates in each population in the recurrent network as

external firing rates are varied across a square in stimulus space
(0 ≤ rx1, rx2 ≤ 30), and the bottom is the readout as a function of rx1 and

rx2 from the same simulation. c: Same as c, except this is for the
semi-balanced state. All firing rates are in Hz.

X, and therefore on rx, in Eq. 3.4. More generally, the neural manifold is the nx-

dimensional hyperplane in n-dimensional space where n and nx are the numbers of

populations in the recurrent and external populations respectively. In addition, any

linear readout R = W · r is a linear function of rx and therefore also planar in

Figure 3.2b.

How do cortical circuits, which exhibit excitatory-inhibitory balance, implement

nonlinear stimulus representations and computations? Below, we describe a parsi-

monious generalization of balanced network theory that allows for nonlinear stimulus

representations by allowing excess inhibition without excess excitation.

49



3.4 Nonlinear Representations in Semi-balanced Networks

Note that Eq. 3.4 is only valid if all elements of r it predicts are non-negative.

Early work considered a single excitatory and single inhibitory population, in which

case positivity of r is assured by simple inequalities satisfied in a large proportion

of parameter space [72, 83]. Similarly, in the simulations described above, we con-

structed W and Wx so all components of r were positive for all values of rx1, rx2 > 0.

3.4.1 Conditions Break the Classical Balanced State

In networks with a large number of populations, conditions to assure r > 0 become

more complicated and the proportion of parameter space satisfying r > 0 becomes

exponentially small. In addition, we proved that connectivity structures, W , obeying

Dale’s law necessarily admit some positive external inputs, X > 0, for which Eq. 3.4

predicts negative rates (see Theorem 1 for proof details). Hence, the classical notion

of excitatory-inhibitory balance cannot be assured by conditions imposed on the

recurrent connectivity structure, W , alone, but conditions on stimuli, X and rx are

also needed.

Theorem 1 Suppose W is a real, non-singular n×n matrix. for which each column

is either non-negative or non-positive (Dale’s law), each column has at least one non-

zero element, and there is at least one positive entry in the matrix. Then there exists

an n×1 vector, X, with strictly positive entries (Xj > 0 for all j) for which the n×1

vector defined by r = −W−1X has at least one negative entry (rj < 0 for some j).

Proof. Without loss of generality, we can rearrange columns to write W with the

50



non-negative columns first and the non-positive ones next,

W =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

+ + . . . − −

+ + . . . − −

. . .

+ + . . . − −

⎤⎥⎥⎥⎥⎥⎥⎥⎦
where each + is an element that is ≥ 0 and each − is ≤ 0. Now define an n × 1

column vector

v =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−

−

. . .

+

+

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
where each − is a negative number, each + is a positive number, there are the same

number − in v as there + columns in W , and the same number of + in v as − entries

in W . Finally, define

X = −Wv

= −

⎡⎢⎢⎢⎢⎢⎢⎢⎣

+ + . . . − −

+ + . . . − −

. . .

+ + . . . − −

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−

−

. . .

+

+

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

+

+

. . .

+

+

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
In the last expression, each + is a positive number. Note that elements of X cannot

be zero because of our assumption that each column of W has at least one non-zero

entry. Now define, r = −WX and we must show that r has at least one negative

51



entry. Compute

r = −WX = −W−1Wv = v.

Therefore, r has at least one negative entry under our assumption that W has at

least one column with non-negative entries.

Note that our proof actually gives infinitely many X that satisfy the theorem, one

for each v having the sign pattern defined in the proof. Moreover, there may exist

additional X that are different from the ones generated by our proof.

While it is possible that cortical circuits somehow restrict themselves to the sub-

sets of parameter space that maintain a positive solution to Eq. 3.4 across all salient

stimuli, we consider the alternative hypothesis that Eq. 3.4 and the balanced network

theory that underlies it do not capture the full spectrum of cortical circuit dynamics.

3.4.2 Semi-balanced State in BRNNs

To explore spiking network dynamics when Eq. 3.4 predicts negative rates, we

considered the same network as above but changed the feedforward connection prob-

abilities so that Eq. 3.4 predicts positive firing rates only when rx1 and rx2 are nearly

equal. When rx2 is much larger than rx1, Eq. 3.4 predicts negative firing rates for

population e1, and vice versa, due to a competitive dynamic.

Simulating the network with rx1 = rx2 produces positive rates, asynchronous-

irregular spiking, and excitatory-inhibitory balance in Figure 3.1d, the first 500ms.

Increasing rx2 to where Eq. 3.4 predicts negative rates for population e1 causes spiking

to cease in e1 due to an excess of inhibition in Figure 3.1d, the last 500ms.

Notably, however, input currents to populations e2 and i remain balanced when

e1 is silenced (see Figure 3.1c) so the i and e2 populations form a balanced sub-

network. These simulations demonstrate a network state that is not balanced in the

classical sense because one population receives excess inhibition. However,

52



1. no population receives excess excitation,

2. any population with excess inhibition is silenced, and

3. the remaining populations form a balanced sub-network.

Here, an excess of excitation (inhibition) in population a should be interpreted as

Ia ∼ O(JK) with Ia > 0 (Ia < 0). The three conditions above can be re-written

mathematically in the large JK limit as two conditions,

1. [Wr+X]a ≤ 0 for all populations a, and

2. If [Wr+X]a < 0, then ra = 0.

These conditions, along with the implicit assumption that r ≥ 0, define a gener-

alization of the balanced state. We refer to networks satisfying these conditions as

“semi-balanced” since they require that strong excitation is canceled by inhibition,

but they do not require that inhibition is similarly canceled. Note that the condition

[Wr +X]a ≤ 0 does not mean Ia < 0, but only that Ia ∼ O(1) whenever Ia ≥ 0 so

that [Wr+X]a = 0 in the large JK limit, i.e., no excess excitation.

In other words, populations in the semi-balanced state can receive O(JK) net-

inhibitory input, but if their input is net-excitatory, it must be O(1). Hence, the

semi-balanced state is characterized by excess inhibition, but not excess excitation,

to some neural populations. In contrast, the balanced state requires net input to

be O(1) regardless of whether it is net-excitatory or net-inhibitory, hence no excess

excitation or inhibition. Note that firing rates remain O(1) in both the balanced and

semi-balanced states.

How are firing rates related to connectivity in semi-balanced networks? we prove

the Theorem 2 below that semi-balanced networks satisfy

r = [Wr+X+ r]+ (3.5)

in the limit of large JK, where [x]+ = max(0, x) is the positive part of x (a.k.s

53



rectified linear or threshold-linear) function. Eq. 3.5 generalized Eq. 3.4 to allow for

excess inhibition.

We now prove that Eq. 3.5, which specifies firing rates in the semi-balanced state

is equivalent to the two conditions preceding it, which define the semi-balanced state.

Theorem 2 Suppose W is an n × n matrix and X is an n × 1 vector. An n × 1

vector r satisfies A)

[Wr+X+ r]+ = r

if and only if it satisfies the following three conditions at every index a = 1, . . . , n :

1. [Wr+X]a ≤ 0

2. If [Wr+X]a = 0, then ra = 0

3. ra ≥ 0.

Proof. We first show that A implies conditions 1–3. Assume r satisfies A and

consider some index, a. We need to show that 1–3 is all satisfied at a. Condition 3

is satisfied because ra = [. . . ]+ ≥ 0. We still need to prove that conditions 1–2 are

satisfied. Note that we either have ra = 0 or ra ≥ 0. First, consider the case that

ra = 0. Then 2 is satisfied automatically and we only need to prove 1. If ra = 0 then,

by A, [Wr+X]+a = ra = 0 which implies that [Wr+X] ≤ 0. Now we must consider

the case ra ≥ 0. By A, [Wr+X]+a = ra > 0, so the ReLu is evaluated at its positive

part and we can conclude that ra = [Wr+X+ r]a = [Wr+X]a + r. Cancelling the

two ra terms implies that [Wr + X]a = 0. Hence, 1 and 2 are both satisfied. This

concludes the proof that A implies 1–3.

Now we must prove that 1–3 implies A. We, therefore, assume 1–3 and derive A

at each index, a. By 3, we must have ra = 0 or ra > 0. First assume ra = 0. Then

[Wr +X + r]a+ = [Wr +X]+a = 0 where the last step follows from our assumption

of 1. Therefore, [Wr +X + r]a+ = ra = 0. Now assume ra > 0. Then, by 1 and 2

54



combined, we must have [Wr +X]a+ = 0. Therefore, [Wr +X + r]a+ = [ra]
+ = ra

since r > 0. This completes our proof.

Note that the condition ra ≥ 0 was not explicitly included in the results because it

was implicitly assumed. In the first half of our proof, we concluded that [Wr+X]a = 0

wherever ra > 0. This implies that balance is maintained at each population that has

a non-zero firing rate, i.e., that the populations with non-zero rates form a balanced

sub-network.

The equation [Wr + X + r]+ = r+ at first appears awkward because it sums

terms with potentially different dimensions: r has dimension 1/time (e.g., units Hz)

while Wr and X have dimensions of the neuron model’s input current (measured

in mV in our model since we normalized by the leak conductance). Even though

it is derived in the limit of large JK. Note that r satisfies Eq. 3.5 and only if it

satisfies cr = [Wr+X+ cr]+ for any c > 0, which explains why terms with different

units can be summed together in Eq. 3.5. The following theorem clarifies that this

combination of dimensions is consistent because one can introduce a scaling factor

without changing the solution space.

Theorem 3 Let W be an n × n matrix and let X and r be n × 1 vectors. The

equation 3.5

[Wr+X+ r]+ = r

is satisfied if and only if the equation

[Wr+X+ cr]+ = cr (3.6)

is satisfied for every c > 0.

Proof. We first prove that Eq. 3.5 implies Eq. 3.6. Assume Eq. 3.5 is true. Let a

be some index. Either ra = 0 or ra > 0. First assume ra = 0, then [Wr +X]a ≤ 0

55



and cr = 0. Therefore [Wr + X + cr]+a = [Wr + X]+a = cra. Now assume ra > 0,

then cra > 0 and as discussed above, we must have [Wr + X]a = 0. Therefore

[Wr+X+ cr]+a = [cr]+a = cra. This concludes our proof that Eq. 3.5 implies Eq. 3.6.

We must now prove that Eq. 3.6 implies Eq. 3.5. This is trivial because we can

simply take c = 1.

It is worth noting that the simplest possible semi-balanced network has one in-

hibitory population and one excitatory population with the excitatory population

silenced by the inhibitory population. This would arise when a condition for the

positivity of firing rates in a two-population balanced network is violated [39, 83].

Notably, Eq. 3.5 represents a piece-wise linear, but globally nonlinear mapping from

X to r.

3.4.3 A Direct Correspondence to ANNs

Unlike balanced networks, semi-balanced networks implement nonlinear stimulus

representations in Figure 3.2c. Eq. 3.5 also demonstrates a direct relationship between

semi-balanced networks and recurrent artificial neural networks with rectified linear

activations used in machine learning [34] and their continuous-time analogues studied

by Curto and others under the label “threshold-linear networks” [23, 24, 35, 94].

These networks are defined by equations of the form

τ ṙ = −r+ [Ur+X]+. (3.7)

Taking U = W + Id where Id is the identity matrix establishes a one-to-one corre-

spondence between solutions to Eq. 3.5 and fixed points of threshold-linear networks

or ARNNs. Indeed, we used this correspondence to construct a semi-balanced spiking

network that approximates a continuous exclusive-or (XOR) function in Figure 3.2

which is widely known to be impossible with linear networks [34].

56



Previous work on threshold-linear networks shows that, despite the simplicity of

Eq. 3.5, its solution space can be complicated [23, 24, 35, 94]: Any solution is partially

specified by the subset of populations, a, at which ra > 0, called the “support” of

the solution. There are 2n potential supports in a network with n populations, there

can be multiple supports that admit solutions, and these solutions can depend in

complicated ways on the structure of W and X. Hence, semi-balanced networks give

rise to a rich mapping from stimuli, X, to responses, r.

The semi-balanced state is equivalent to bounding rates. Under Eq. 3.3, the semi-

balanced state is realized and Eq. 3.5 is satisfied only if firing rates do not grow large

as JK → ∞ (see Theorem 4 for proof details). In other words, Eq. 3.5 and the

semi-balanced state it describes are general properties of strongly and/or densely

coupled networks (large JK) with moderate firing rates. To the extent that cortical

circuits have large JK values and moderate firing rates, therefore, Eq. 3.5 provides

an accurate approximation to cortical circuit responses.

We now prove that for firing rate models, the semi-balanced state is realized if

and only if r ∼ O(1) as JK →∞. The proof relies on some reasonable assumptions

on the f-I curve, i.e., the function r = f(I).

Theorem 4 Suppose W is a fixed n× n matrix and X a fixed n× 1 vector. Assume

that r and I are n× 1 vectors that depend on JK with equation 3.3

I = JK[Wr+X]

and

r = f(I)

for all sufficiently large values of JK > 0. Also assume that f(x) is a non-negative,

non-decreasing function for which, limx→∞ f(x) = M , and limx→−∞ f(x) = 0. Here,

M can be finite in the case of a saturating or sigmoidal f-I curve, or M =∞ the case

57



of an f-I curve that does not saturate. If

r∞ = lim
JK→∞

r

exists and r∞ < M for all a = 1, ..., n then

[Wr∞ +X+ r∞] = r∞ (3.8)

Proof. Assume limJK→∞ r exists and is finite. Then we need to show that it

satisfies Eq. 3.8. Specifically, for each index, a = 1, . . . , n, we need to show that

[[Wr∞ +X]+a r
∞
a ] = r∞a

where [Wr + X]a is the ath index of [Wr + X]. Let a ∈ [1, . . . , n] be an arbitrary

index and define

c = lim
JK→∞

IaJK.

Note that

c = [Wr+X]a = [Wr∞ +X]a.

exists and is finite by assumption.

We first argue that c ≤ 0. To show this, we will assume that c > 0 and prove a

contradiction. If c > 0, then

lim
JK→∞

Ia = lim
JK→∞

JKc =∞.

and therefore

r∞a = lim
JK→∞

f(Ia) = M.

which contradicts our assumption that r∞a < M for all M . We may conclude that

58



c ≤ 0. We now break the proof into two cases: c = 0 and c < 0. Case I: c = 0. We

have c = [Wr+X]a = 0, so

[[Wr∞ +X]a + r∞a ] = [r∞a ]+

but r∞a > 0 at all indices, a, because r = f(I) ≥ 0 at all JK and r∞ = limJK→∞ r.

Therefore,

[[Wr∞ +X]a + r∞a ] = [r∞a ]+ = r∞a .

This completes Case 1. Case I: c < 0. We have c = [Wr+X]a < 0, so

lim
JK→∞

Ia = lim
JK→∞

JKc = −∞.

Therefore,

r∞a = lim
JK→∞

f(Ia) = lim
Ia→∞

f(Ia) = 0.

As a result,

[[Wr∞ +X]a + r∞a ]+ = [[Wr∞ +X]a]
+ = 0 = r∞a .

because [Wr+X]a = c < 0 and r∞a . This completes Case 2.

In summary, our results establish a direct mapping from biologically realistic

cortical circuit models to recurrent artificial neural networks used in machine learning

and to the rich mathematical theory of threshold-linear networks.

3.4.4 Homeostatic Plasticity Produces “Detailed Semi-balanced”

So far, we have only considered firing rates and excitatory-inhibitory balance

averaged over neural populations. Cortical circuits implement distributed neural

representations that are not always captured by homogeneous population averages

[75]. Balance realized at the single-neuron resolution, i.e., where the input to each

59



neuron is balanced, is often referred to as “detailed balance” [40, 84]. We, therefore,

use the term “detailed semi-balance” for semi-balance realized at single neuron

resolution.

Specifically, generalizing the definitions of population-level balance and semi-

balance above, detailed balance is defined by requiring that the net synaptic input to

all neurons is O(1). Detailed semi-balanced only requires neurons’ input to be O(1)

when it is net-excitatory. Net-inhibitory input to some neurons will be O(JK) in

the detailed semi-balanced state. As such, the distribution of total synaptic input to

neurons in the semi-balanced state will be left-skewed, indicating strong inhibition

to some neurons, but no comparably strong excitation.

To explore detailed balance and semi-balance, we first considered the same spiking

network considered above, but with only a single excitatory, inhibitory, and external

population (Figure 3.3a). To model a stimulus with a distributed representation,

we first added an extra external input perturbation that is constant in time but

randomly distributed across neurons. Specifically, the time-averaged synaptic input

to each neuron was given by the N × 1 vector

I⃗ = −JK[Jr⃗ + X⃗] (3.9)

where J is the N × N recurrent connectivity matrix and r⃗ is the N × 1 vector of

firing rates. Note that we use the arrow notation, vecI, for N-dimensional vectors

to distinguish them from boldfaced mean-field vectors, like I, that have dimensions

equal to the number of populations.

We apply the same notational convention to r⃗, X⃗, etc. For a given Z⃗ the mean

N-dimensional external input to each neuron is given by

X⃗ = Jxr⃗x + Z⃗

60



E

I

E+I

iSTDP on
(detailed 
balance)

iSTDP w/
time-dep. stim

(detailed 
semi-balance)

10s

-10

0

10

s
y
n

a
p

tic
 c

u
rr

e
n

t

total current (E+I)
0-5 5

lo
g

(c
o

u
n

t)

0

40

80

ra
te

 (
H

z
)

e ix

distributed
stimulus

detailed
imbalance

a c

db

80s40s 120s

Figure 3.3. Detailed imbalance, balance, semi-balance, and
distributed neural representations a: Network diagram. Same as in

Figure 3.1a except there is just one excitatory and one external population
and an additional input Z⃗ = σ1Z⃗1 + σ2Z⃗2. b: Histograms of input currents
to all excitatory neurons averaged over the first 40s (gray, imbalanced), the
next 40s (yellow, balanced), and the last 40s (purple, semi-balanced). c:

Excitatory (red), inhibitory (blue), and total (black) input currents to 100
randomly selected excitatory neurons averaged over 2s time bins. During

the first 40s, synaptic weights and σ1 = σ2 were fixed. During the next 40s,
homeostatic iSTDP was turned on and σ1 = σ2 were fixed. During the last
40s, iSTDP was on and σ1 and σ2 were selected randomly every 2s. d:

Firing rates of the same 100 neurons averaged over 2s bins.

61



where, Jx and r⃗x are the feedforward connectivity matrix and external rates. The

distributed stimulus, Z⃗, is defined by

Z⃗ = σ1Z⃗1 + σ2Z⃗2

where Z⃗1 and Z⃗2 are standard normally distributed, N × 1 vectors. The vector,

Z⃗, lives on a two-dimensional hyperplane in N-dimensional space parameterized by

σ1 and σ2. Hence, Z⃗ models a two-dimensional stimulus whose representation is

distributed randomly across the neural population.

Since we are primarily interested in the encoding of the perturbation, Z⃗, we could

have replaced the spike-based, Poisson synaptic input from the external population

with a time-constant, DC input to each neuron as in previous work [82]. We chose to

keep the spike-based input to add biological realism and to demonstrate the encoding

of Z⃗ is robust to the Poisson noise induced by the background spike-based input. A

more biologically realistic model might encode Z⃗ in the spike times themselves instead

of using an additive perturbation.

Simulations show that this network does not achieve detailed balance or semi-

balance: Some neurons receive excess inhibition and some receive excess excitation

(Figure 3.3c, first 40s), leading to large firing rates in some neurons (Figure 3.3b) and

broad distribution of total input currents (Figure 3.3b). Indeed, it has been argued

previously that randomly connected networks break detailed balance when stimuli

and connectivity are not co-tuned [40, 52]. This is consistent with previous results

on “imbalanced amplification” in which connectivity matrices with small-magnitude

eigenvalues values can break balance when external inputs are not orthogonal to the

corresponding eigenvectors [29]. When J is large and random, it will have many

eigenvalues near the origin, which can lead to imbalanced amplification if X⃗ is not

orthogonal to the corresponding eigenvectors.

62



Previous work shows that detailed balance can be realized by a homeostatic,

inhibitory spike-timing dependent plasticity (iSTDP) rule [40, 84]. Indeed,

when iSTDP was introduced in our simulations, the detailed balance was obtained

and firing rates became more homogeneous (Figure 3.3c and d, the second 40s) with

a much narrower distribution of total input currents (Figure 3.3b, yellow), indicating

detailed balance, at least while σ1 and σ2 were held fixed.

Of course, real cortical circuits receive time-varying stimuli. To simulate time-

varying stimuli, we randomly selected new values of σ1 and σ2 every 2s (Figure 3.3c

and d, the last 40s). This change lead to some neurons receiving excess inhibition in

response to some stimuli, but neurons did not receive correspondingly strong excess

excitation (Figure 3.3c, black curves the last 40s) resulting in a left-skewed distri-

bution of synaptic inputs (Figure 3.3b, purple). These results are consistent with

a detailed semi-balanced state, which is characterized by excess inhibition to some

neurons, but a lack of similarly strong excitation. These results show that detailed

semi-balance, but not detailed balance, is naturally achieved in circuits with iSTDP

and time-varying stimuli.

To gain a better intuition for why the distribution in (Figure 3.3b, purple) is left-

skewed, consider the network with iSTDP and time-varying stimuli. iSTDP changes

weights in a way that encourages all excitatory firing rates to be close to a target rate

[84] (we used a target rate of 5Hz). In the presence of a stimulus that varies faster

than the iSTDP learning rate, the network cannot achieve the target rates for every

neuron at every stimulus. However, the network is pushed strongly away from states

with large, net-excitatory input to some neurons because those states produce large

firing rates that are very far from the target rates. On the other hand, the network

is not pushed as strongly away from states with large net-inhibitory input to some

neurons because those states produce firing rates of zero for those neurons, which is

not so far from the target rates.

63



Repeating our simulations in a model with conductance-based synapses shows

that shunting inhibition prevents strong inhibitory currents, consistent with evidence

that shunting inhibition is prevalent in visual cortex [15], but if currents are measured

under voltage clamp then recorded currents are similar to those in Figure 3.3b-d, with

excess hyperpolarizing currents in the semi-balanced state.

Firing rates in the detailed semi-balanced state are not very broadly distributed

(Figure 3.3c, the last 40s), which is inconsistent with some cortical recordings. Note

that the broadness of the firing rate distribution is partly a function of the magnitude

of the perturbation strengths, σ1 and σ2. Also, all of our perturbations lie on a two-

dimensional plane, so they could potentially be balanced more effectively by iSTDP

than higher-dimensional perturbations. Finally, our iSTDP rule used the same target

rate for all neurons, which may not be realistic. Stronger perturbations, higher-

dimensional perturbations, and variability in target rates, among other factors, could

lead to broader firing rate distributions in the detailed semi-balanced state. The width

of firing rate distributions for naturalistic stimuli should be considered in future work

but is outside the scope of this study.

In summary, when networks are presented with time-varying stimuli, iSTDP pro-

duces a detailed semi-balance, but not a detailed balance.

3.5 Discussion

We introduced the semi-balanced state, defined by an excess of inhibition with-

out an excess of excitation. This state is realized naturally in networks for which

the classical balanced state cannot be achieved and produces nonlinear stimulus rep-

resentations, which are not possible in classical balanced networks. We established

a direct mathematical relationship between semi-balanced networks, artificial neural

networks, and the rich mathematical theory of threshold-linear networks. Detailed

semi-balance is realized naturally in networks with iSTDP and time-varying stimuli

64



and produces nonlinear stimulus representations that improve the network’s compu-

tational properties.

Previous work revealed multi-stability and nonlinear transformations at the level

of population averages by balanced networks with short-term synaptic plasticity [60].

Future work should consider how the nonlinearities introduced by short-term plas-

ticity combine with the nonlinearities introduced by semi-balance.

Classical balanced networks are balanced at the population level, but not neces-

sarily at the level of individual neurons (no detailed balance). While such networks

can only perform linear computations at the level of population averages, they can

perform nonlinear computations at the level of single neurons and their firing rate

fluctuations [21, 50, 51]. Cortical circuits do appear to perform nonlinear compu-

tations at the population level. For example, population responses to high-contrast

visual stimuli add sub-linearly, which can be captured by supralinear stabilized net-

works (SSNs) [74] and semi-balanced networks.

We demonstrated that semi-balanced networks can implement a continuous XOR

nonlinearity at the population level (Figure 3.2c) and detailed semi-balanced net-

works implement more intricate nonlinearities at the resolution of single neurons

(Figure 3.3b and c), but we did not consider additional types of nonlinearities. Fu-

ture work should more completely explore the types of nonlinearities that can be

expressed by solutions to Eq. 3.5.

We showed that networks with iSTDP achieve detailed semi-balance and produce

nonlinear representations at the level of individual neurons (Figure 3.3c and d). How-

ever, we do not mean to suggest that iSTDP or balance is responsible for the presence

of nonlinear representations. iSTDP is needed for achieving detailed semi-balance,

not nonlinear representations. However, networks without iSTDP are imbalanced at

the resolution of individual neurons (detailed imbalance, see Figure 3.3b-d, gray). In

summary, our results show that networks with iSTDP can produce a form of detailed

65



balance (detailed semi-balance) while still implementing nonlinear representations.

One limitation of our approach is that it focused on fixed point rates and did not

consider their stability or the dynamics around fixed points. Indeed, fluctuations of

firing rates and total synaptic inputs are O(1) under the scaling of synaptic weights

that we used. When a solution to Eq. 3.5 exists, it represents a fixed point of Eq. 3.2

in the JK →∞ limit. The fixed point is stable when all eigenvalues of the Jacobian

matrix of Eq. 3.5 evaluated at the fixed point have a negative real part. Previous work

shows that balanced networks can exhibit spontaneous transitions between attractor

states [57] which can be formed by iSTDP [57, 84]. Attractor states in those studies

maintained strictly positive firing rates across populations, keeping the networks in

the classical balanced state. This raises the question of whether similar attractors

could arise in which some populations are silenced by excess inhibition, putting them

in a semi-balanced state. Tools for studying these states, and for studying stability

and dynamics more generally, could potentially be developed from the mathematical

theory of threshold-linear networks [23, 24, 35, 94].

The semi-balanced state is defined by an excess of inhibition without a corre-

sponding excess of excitation. This is at first glance consistent with evidence that

inhibition dominates cortical responses in awake animals [37]. However, it should be

noted that synaptic conductances, not currents, were reported and they only reported

conductances relative to their peaks, not raw conductances [37]. It is therefore diffi-

cult to draw a direct relationship between the results in [37] to our results on balance

or semi-balance. In addition, if synaptic currents are measured under a voltage clamp

with the potential clamped sufficiently far between the excitatory and inhibitory re-

versal potentials, we predict a skewed distribution of currents with a heavier tail of

hyperpolarizing versus depolarizing currents (Figure 3.3b, purple). These predictions

should be tested more directly using in vivo recordings.

The relationship between connectivity and firing rates in recurrent spiking net-

66



works can be mathematically difficult to derive, which can make it difficult to derive

gradient-based methods for training recurrent spiking networks (though some studies

have succeeded, see for example [48, 62]). The piece-wise linearity of firing rates in

the semi-balanced state, Eq. 3.5 could simplify the training of recurrent spiking net-

works because the gradient of the firing rate with respect to the weights can be easily

computed. This could have implications for the design and training of connectivity

in neuromorphic hardware.

In summary, semi-balanced networks are more biologically parsimonious and com-

putationally powerful than widely studied balanced network models. The foundations

of semi-balanced network theory presented here open the door to several directions

for further research.

67



CHAPTER 4

CAN HOMEOSTATIC PLASTICITY LEARN TO COMPUTE PREDICTION

ERRORS?

This chapter is adapted from [96].

In the previous chapter, we discovered the properties of strongly connected BRNNs

under different stimulus representations. We extended the balanced theory into a

semi-balanced state and demonstrated that homeostatic inhibitory plasticity can

achieve semi-balanced states in a detailed individual neuron level with time-varying

stimuli. These findings lay a foundation for us to understand more functionalities

that the brain can “do”. One of such is that the brain is believed to make predictions

about sensory stimuli and encode deviations from these predictions in the activity

of “prediction error neurons.” For example, in the visuomotor system, head move-

ments produce predictable flows of an animal’s visual scene. Visual cortical circuits

learn predictable associations between bottom-up input from the visual stream and

top-down input from the motor system. Violations of the learned predictions, known

as “mismatched stimuli” or “prediction errors”, produce distinct responses in vi-

sual cortical neurons, which can help the animal distinguish between self-driven and

externally driven movements of its visual scene [8, 43, 47, 53].

The principle that cortical neuronal networks can make predictions about sensory

stimuli and detect errors in these predictions defines the widely influential theory of

predictive coding. Although the precise circuitry and learning mechanisms through

which the brain can learn to compute and update its predictions are unknown, home-

68



ostatic inhibitory synaptic plasticity is a promising mechanism for training neuronal

networks to perform predictive coding. Homeostatic plasticity causes neurons to

maintain a steady, baseline firing rate in response to inputs that closely match the

inputs on which a network was trained, but firing rates can deviate away from this

baseline in response to stimuli that are mismatched from training.

We combine computer simulations and mathematical analysis systematically to

test the extent to which randomly connected, unstructured networks can learn to

compute prediction errors through homeostatic inhibitory synaptic plasticity. We

find that homeostatic plasticity alone is sufficient for learning prediction errors for

trivial time-constant stimuli, but not for more realistic time-varying stimuli. We use

a mean-field theory of plastic networks to explain our findings.

4.1 Introduction

The idea that the brain uses predictions and prediction errors to encode and

interpret sensory information dates back to 19th century work by Helmholz [46, 87]

and underlies more general theories of neural function such as predictive coding,

predictive processing, active inference, and the free energy principle [22, 31, 46, 69].

The question of how neural circuits compute prediction errors and how they learn

predictions through biologically plausible synaptic plasticity rules is not settled, but

some theories have been put forward [12, 14, 42, 70, 76, 88, 90].

Cortical neurons are highly interconnected, even within a single cortical area

and layer. This dense, recurrent, and intralaminar connectivity shapes the intrinsic

dynamics and stimulus responses of local cortical circuits. The nonlinear firing rate

dynamics that arise from this recurrent connectivity can interact with the slower

dynamics of synaptic plasticity in complex ways. Homeostatic inhibitory synaptic

plasticity is a widely observed and widely studied type of synaptic plasticity [19,

20, 40, 58, 76, 85, 86] in which the strength of inhibitory synapses are adjusted in

69



an activity-dependent manner that tends to push the postsynaptic neurons’ firing

rates toward a homeostatic baseline target. Simulations and theoretical analyses of

mathematical models of homeostatic inhibitory plasticity show that, while firing rates

are near their targets in response to stimuli on which the network has been trained,

firing rates deviate from their targets in response to unfamiliar stimuli in these models

[3, 9, 41, 42, 76, 85].

As in related computational work [41, 42, 76] 2021), we conjectured that home-

ostatic inhibitory plasticity could learn to perform some type of predictive coding.

In particular, if the external input to a neural population were formed from bottom-

up and top-down stimuli, then homeostatic plasticity in the network would naturally

learn to produce baseline activity in response to “matched” top-down and bottom-up

pairings (i.e., pairings that are similar to those on which the network was trained).

On the other hand, “mismatched” pairings (i.e., pairings from outside the training

distribution) would produce firing rate responses that are further from the homeo-

static baseline. In this sense, the network should learn to encode prediction errors

(i.e., errors in the ability to predict top-down input from bottom-up input or vice

versa) in the deviation of the firing rates from their baseline. Importantly, and in

contrast to previous work [41, 42, 76], we conjectured that the network should not

need to be imparted with any special structure or architecture to learn this com-

putation since homeostatic plasticity should naturally achieve this result due to its

tendency to produce baseline responses to stimuli on which the network was trained,

but not in response to novel stimuli.

To test our conjecture, we used an unstructured, recurrent, spiking neuronal

network model endowed with a homeostatic inhibitory plasticity rule receiving two

sources of external input, modeling top-down and bottom-up stimuli. We trained

the network with given patterns of top-down and bottom-up pairings, interpreted as

“matched” stimuli, before presenting a “mismatched” stimulus that deviated from

70



the pairings used during training. Numerical simulations showed that the network

reliably produced baseline firing rates for a fixed pair of bottom-up and top-down

inputs during training, and deviated from baseline in response to a mismatched stim-

ulus. A mean-field firing rate model and a mathematical analysis using a separation

of timescales helped reveal the dynamics underlying these numerical simulations.

Hence, homeostatic plasticity learns to compute prediction errors whenever top-down

and bottom-up stimuli are fixed during training. However, useful predictive coding

algorithms should learn to detect relationships between time-varying top-down and

bottom-up inputs. We generalized our input model to vary the intensity of top-down

and bottom-up inputs in unison. An effective learning algorithm should learn to

detect a prediction error whenever the intensity changes out of unison. To our sur-

prise, our spiking network with homeostatic synaptic plasticity was unable to learn

to detect this type of prediction error, even in a relatively simple (time-varying) set-

ting. Going back to our mean-field analysis helped to clarify how and why the model

failed to perform predictive coding in this setting after succeeding in the simpler

(time-constant) setting.

We conclude that homeostatic inhibitory synaptic plasticity alone is not sufficient

to learn and perform non-trivial predictive coding in unstructured neuronal network

models. Previous theoretical work shows that network models that carefully ac-

count for the connectivity structure of multiple inhibitory subtypes are able to learn

prediction errors using homeostatic plasticity, even for inputs where top-down and

bottom-up input co-vary in intensity [41, 42]2021). Hence, the failure of our model

in this scenario implies that network structure is critical for successfully learning

predictive coding tasks with homeostatic plasticity.

71



4.2 Model Descriptions

4.2.1 An EIF Network Model with Homeostatic Plasticity

We first consider a computational model of a local cortical circuit composed of

N = 5000 randomly connected exponential integrate-and-fire (EIF) spiking neuron

models ( Ne = 4000 of which are excitatory and Ni = 1000 inhibitory) [16, 32]. The

membrane potentials of neuron j in population a = e, i obeys

τm
dV a

j

dt
= −(V a

j − EL) +DT e
V a
j −VT
DT + Iaj (t) (4.1)

with the added condition that each time Vk(t) crosses a threshold at Vth , it is reset

to Vre and a spike is recorded. The synaptic input to neuron j in population a is

modeled by

Iaj (t) = Xa
j (t) +

∑︂
b=e,i

N∑︂
k=1

Jab
jkαb(t− tbn,k)

where Xa
j (t) models external synaptic input, Jab

jk is a synaptic weight, tbn,k is the time

of the nth spike of neuron k in population b, and αb(t) =
e
− t

τb

τb
H(t) is a synaptic filter

with H(t) the Heaviside step function.

Initial connectivity in the model is random (connection probability p = 0.1) with

initial weights, Jab
jk , determined only by pre- and post-synaptic neuron type (Jab

jk = jab

for connected neurons). Excitatory connectivity, Jae
jk , remained fixed, but inhibitory

connectivity evolves according to a homeostatic, inhibitory spike-timing-dependent

plasticity (iSTDP) rule [3, 40, 85]. Specifically, each time that neuron j in population

a = e, i spikes (which occurs at times tan,j), the inhibitory synaptic weights targeting

that neuron are updated according to

Jai
jk = Jai

jk − ηax
i
k(t

a
j,n)

72



where a is a learning rate and recall that taj,n is the time of the nth spike of neuron j in

population a = e, i. Additionally, each time inhibitory neuron k spikes, its outgoing

synaptic weights are updated according to

Jai
jk = Jai

jk − ηax
a
k(t

i
j,n − 2ra0)

where tik,n is the time of the nth spike of inhibitory neuron k. The time series, xa
j (t)

are defined by the differential equation

τSTDP

dxa
j

dt
= −xa

j

in addition to the rule that xa
j (t) is incremented each time that neuron j in population

a = e, i spikes according to,

dxa
j (t

a
j,n)← dxa

j (t
a
j,n) +

1

τSTDP

(4.2)

As a result, xa
j (t) estimates the firing rate of neuron j in population a by performing

an exponentially-weighted sliding average of the spike density. This plasticity rule

tends to push excitatory and inhibitory firing rates toward their target rates, re0 and

ri0, respectively (see [3, 9, 40, 85] and the mean-field theory presented below).

4.2.2 Simulation Parameters

All simulations were performed by numerically solving the corresponding differ-

ential equations using the forward Euler method in custom-written Python code.

For spiking network simulations (Eqs. (4.1)–(4.2); Figures 4.1, 4.4, and 4.5) and

mean-field rate network simulations (Eqs. (4.6)–(4.7); Figures 4.2 and 4.6) we used a

time step size of dt = 0.1ms. For the slow-timescale model (Eqs. (4.24); Figures 4.3

and 4.7) we used a time step size of dt = 1s.

73



4.2.2.1 In the Spiking Network Model

For all spiking network simulations (Eqs. (4.1)–(4.2); Figures 4.1, 4.4, and 4.5),

we used Ne = 4000 and Ni = 1000 excitatory and inhibitory neurons. All neurons

were connected with probability pee = pei = pie = pii = 0.1. Connected neurons had

initial synaptic weights jee = 7.07mV/ms, jei = −49.5mV/ms, jie = 31.8mV/ms, and

jii = −70.7mV/ms. EIF neuron parameters were τm = 15ms, EL = −72mV, Vre =

−73mV, DT = 2mV, VT = −55mV, Vth = 0mV, and a reflecting lower boundary on

the membrane potential was placed at Vlb = −80mV to approximate an inhibitory

reversal potential. Synaptic timescales were τe = 6ms and τi = 4ms. Baseline external

input to excitatory and inhibitory neurons was X0
e = 42.4mV and X0

i = 28.3mV.

Parameters for the inhibitory plasticity rule were ηe = 56.6mV, ηi = 28.3mV, and

τSTDP = 200ms with target rates at re0 = 4Hz and ri0 = 8Hz.

4.2.2.2 In the Mean-Field Rate Network Model

For mean-field rate network simulations (Eqs. (4.6)–(4.7); Figures 4.2 and 4.6),

we used a gain of g = 0.001ms/mV, which was derived by simulating the spiking

network model without plasticity and then fitting the f-I curve r = f(I) = gIH(I)

(where H is the Heaviside step function) to the time-averaged firing rates and input

currents of all neurons in the simulation. Learning rates for rate network simulations

were ηe = 8944mV and ηi = 4472mV. All other parameters were the same as those

used in spiking network simulations.

We are interested in understanding the extent to which such networks can learn

to perform predictive coding [14, 46, 69]. More specifically, we reasoned that neurons

would spike close to their target rates in response to stimulus patterns similar to

those on which they were trained, but deviate from the target rates in response to

stimuli that deviate from the training stimuli. In other words, the deviation of firing

rates from their targets should encode a “prediction error,” i.e., a deviation of the

74



inputs from the patterns that appeared during training.

4.3 Detectable Prediction Errors After Training

4.3.1 Time-constant Inputs

For illustrative purposes, we first considered a simple input model for which

the excitatory population was divided into two sub-populations, e1 and e2, with

Ne1 = Ne2 = 2000 neurons in each sub-population (Figure 4.1A, B). Recurrent con-

nectivity did not depend on sub-population membership, so the network was com-

pletely unstructured. During training, each neuron in populations e1 and e2 received

external stimuli of the form (Figure 4.1A)

Xe1 = X0
e + U

Xe2 = X0
e + V

⎫⎪⎬⎪⎭ matched (4.3)

where X0
e is a baseline input that assures neurons spike at reasonable rates, U is a

perturbation modeling bottom-up input, and V is a perturbation modeling top-down

input. We used positive bottom-up input and negative top-down input,

U = X0
e/5

V = −X0
e/5,

(4.4)

but our results are not sensitive to this specific choice of inputs. We refer to this as

a “matched” stimulus because it defines the matching of bottom-up with top-down

stimuli that the network is trained on. After training on matched stimuli, we modeled

mismatched stimuli by the absence of top-down input (Figure 4.1B),

Xe1 = X0
e + U

Xe2 = X0
e

⎫⎪⎬⎪⎭mismatched. (4.5)

75



A

mismatch

bottom-up
input

spiking
network

U

e1

e2
i

top-down
input

V

U

e1

e2
i

training (matched) stimulus

mismatched stimulus

B

V

Figure 4.1. Prediction errors after training on time-constant inputs
to multiple sub-populations. A and B: Network diagram with

“training” and “mismatch” stimuli respectively. A randomly connected,
recurrent spiking neural network of N = 5000 neurons consisted of two
excitatory sub-populations (e1 and e2) and one inhibitory (i) population.
During the first 100s of the simulation, the network received a “training”

stimulus in which e1 and e2 received extra external input modeling
bottom-up and top-down stimuli respectively (A). Then a “mismatch”
stimulus was introduced for 1s by removing the top-down stimulus to
population e2. C: Homeostatic inhibitory synaptic plasticity caused
population-averaged firing rates to converge to their targets during

training, but they deviated from their targets in response to the mismatch
stimulus. D: The deviation of the mean firing rates from their targets
(MSEmean) and the mean deviation of individual neurons’ firing rates

(MSEpop) quantify the deviation of firing rates from their targets. E and
F: Raster plots (top) and membrane potential (bottom) of a random subset

of neurons from population e1.

76



We refer to these stimuli as “mismatched” because the top-down and bottom-up

inputs are mismatched when compared to the “matched” pairings used to train the

network. Mismatched stimuli could also be modeled by an absence of bottom-up

input, or any other deviation from the inputs used for training.

We hypothesized that, after training on matched stimuli, the network would pro-

duce firing rates close to the target rates in response to matched stimuli and produce

firing rates further from the target rates in response to mismatched stimuli.

At the beginning of the simulation mean excitatory and inhibitory firing rates

deviated from their targets, but inhibitory plasticity pushed them toward their targets

over the course of tens of seconds (Figure 4.1C). After 100s of training on matched

stimuli, we tested a mismatched stimulus for 1s. Consistent with our hypothesis, the

mean firing rates of each population were further from their targets in response to

the mismatched stimulus (Figure 4.1C).

4.3.2 An Analysis of Multiple Sub-populations for the Error Detection

We quantified the distance of the firing rates from their targets from spiking

network simulations using two methods. For the first method, we computed the

MSE of the population-averaged firing rates (Figure 4.1D, light green),

MSEmean =
∑︂

a=e1,e2,i

qa(ra − r0a)
2

where r0a is the target rate and ra is the mean firing rate of each population averaged

over neurons in that population and averaged over time windows of size T = 1s. The

coefficients qa = Na/N represent the proportion of the network contained in each

population (qe1 = qe2 = 0.4 and qi = 0.2 for our network). Hence, MSEmean weights

the errors of larger sub-populations more heavily.

The MSEmean measures how far the population-average rates differ from their

77



target rates but does not measure the deviation of individual neurons’ firing rates.

Despite the fact that external input was constant across time and the simulations were

deterministic (with the exception of “quenched” randomness from the random con-

nectivity), neurons exhibited substantial variability in their spike timing and mem-

brane potential dynamics (Figure 4.1E,F). These dynamics are characteristic of an

asynchronous-irregular state [7, 17, 18, 21, 71, 82, 83].

To account for the deviation of individual neurons’ firing rates from spike-

timing variability in spiking network simulations, we also computed the MSE across

the entire network (Figure 4.1D, dark green),

MSEpop =
1

N

N∑︂
j=1

(rj − r0j )
2

where rj is the firing rate of neuron j = 1, . . . , N and r0j is its target rate. Both

measures of MSE show a decrease during training and a sharp increase in response

to the mismatched stimulus, but MSEpop is larger overall due to the spike-timing

variability of each neuron.

4.3.2.1 Mean-field Rate Model Approximation

The results from the spiking network can be understood using a simpler dynamical

mean-field model in which mean firing rates of each population are approximated by

a system of differential equations,

τ ⊙ dr

dt
= −r+ f (Wr+X) (4.6)

where τ = [τe1 τe2 τi]
T is a vector of time constants, ⊙ represents element-wise

multiplication, and r = [re1 re1 ri]
T is a vector approximating the mean firing

rates of the two excitatory sub-populations and the inhibitory population. The mean

78



external input to each population is given by the vector

X =

⎡⎢⎢⎢⎢⎣
Xe1

Xe2

Xi

⎤⎥⎥⎥⎥⎦
and the recurrent connectivity matrix is defined by

W =

⎡⎢⎢⎢⎢⎣
we1e1 we1e2 we1i

we2e1 we2e2 we2i

wie1 wie2 wii

⎤⎥⎥⎥⎥⎦
where [3, 9, 10, 29, 67, 68]

wab = Nbpabjab

Here, Nb is the number of neurons in population b = e1, e2, i (so Ne1 = Ne2 =

Ne/2 = 2000 and Ni = 1000), pab is the connection probability from population b

to population a, and jab is the mean non-zero synaptic weight (mean of J jk
ab between

connected neurons). The inhibitory entries, wai for a = e1, e2, i, are negative and

evolve according to

dwai

dt
= −ηa(ra − ra0)ri (4.7)

where ηa sets the timescale of plasticity and ra0 is the target rate of population a =

e1, e2, i. For simplicity, we consider a rectified linear “f-I” curve,

f(I) =

⎧⎪⎪⎨⎪⎪⎩
gI I > 0

0 I ≤ 0

. (4.8)

The gain, g, was fit to spiking network simulations (see Materials and Methods).

Simulating this model shows excellent agreement with the firing rates from the

79



Figure 4.2. mean-field firing rate model captures the dynamics of
the spiking network model. A: Firing rates of the mean-field firing rate
model defined by Eqs. (4.6) and (4.6). Compare to Figure 4.1C. B: MSE
deviation of the firing rates from their targets (MSEmf ; light green) and
the MSE with a Poisson correction (MSEPoisson; dark green). Compare to

Figure 4.1D.

spiking network simulations (Figure 4.2) and the mean-field simulations are compu-

tationally more efficient than the spiking network simulations by a factor of 70 (6.0s

for the mean-field simulation compared to 435.0s for the spiking network simulation).

The deviation of the firing rates in the mean-field rate model from their targets can

be quantified by

MSEmf =
∑︂

a=e1,e2,i

qa(ra − r0a)
2 (4.9)

which is identical to MSEmean above except that ra represents the rate from the

mean-field simulations instead of the mean firing rates from the spiking net simu-

lations. Indeed, MSEmf closely matches MSEmean from the spiking network simu-

lations (Figure 4.2B, compare to Figure 4.1C), demonstrating that the two models

have similar mean-field dynamics. The value of MSEpop from the spiking network

simulations does not have a direct analogue in the mean-field model, but under an

assumption of Poisson-like spike-timing variability in the spiking network, MSEpop

80



can be approximated by

MSEPoisson = MSEmf +
1

T

∑︂
a

qara (4.10)

where ra is the firing rate of population a = e1, e2, i from the mean-field model and

T is length of the time window over which firing rates are computed in the spiking

network simulations. Specifically, MSEPoisson represents the population-level MSE

(i.e., MSEpop) that would be produced by populations of Poisson spike trains with

firing rates ra.

Proof. Consider a population of N neurons divided into M sub-populations where

sub-population a contains Na neurons for a = 1, . . . ,M (M = 3 and a = e1, e2, i for

the models considered in this paper). Assume that each neuron in population a spikes

like a Poisson process with a rate of ra. Let na
j be the number of spikes emitted by

neuron j = 1, . . . , Na in population a = 1, . . . ,M during a time interval of duration

T and let

raj =
na
j

T

be the sample firing rate of neuron j. Then each na
j has expectation and variance

E[na
j ] = var(na

j ) = raT

be the sample firing rate of neuron j. Then each na
j has equal expectation and

variance as

E[na
j ] = var(na

j ) = raT

so each sample rate has an expectation

E[raj ] = E

[︃
na
j

T

]︃
= ra

81



and variance

var(raj ) = var

(︃
na
j

T

)︃
=

ra
T
.

Now suppose we have target rates of r0a for each neuron in population a and we would

like to compute the population-wide MSE deviation of the sample rates from their

targets. This can be written as

MSEpop =
1

N

N∑︂
j=1

(rj − r0j )
2

=
1

N

M∑︂
a=1

Na∑︂
j=1

(raj − r0a)
2

=
M∑︂
a=1

qa
1

Na

Na∑︂
j=1

(raj − r0a)
2

where qa = Na/N is the proportion of neurons in population a, rj is the sample rate,

and r0j is the rate parameter for neuron j = 1, . . . , N . The inner sum can be written

as
1

Na

Na∑︂
j=1

(raj − r0a)
2 = (r0a − ra)

2

+
1

Na

Na∑︂
j=1

(raj − ra)
2 − 2(r0a − ra)(r

a
j − ra).

The first term in the sum is the sample variance of raj , so

1

Na

Na∑︂
j=1

(raj − ra)
2 ≈ var(raj ) =

ra
T
.

when Na is large. The last term in the sum can be ignored when Na is large because

1

Na

Na∑︂
j=1

(r0a − ra)(r
a
j − ra) = (ra − r0a)

(︄
ra −

1

Na

Na∑︂
j=1

raj

)︄

≈ 0

82



since ra is the expected value of raj . Putting this all together gives

MSEpop ≈
M∑︂
a=1

qa

[︂
(ra − r0a)

2 +
ra
T

]︂
= MSEmf +

1

T

M∑︂
a=1

qara

where

MSEmf =
M∑︂
a=1

qa(ra − r0a)
2

is the mean-field MSE defined in Eq. (4.9). This calculation motivates the definition

of the Poisson-corrected MSE,

MSEPoisson = MSEmf +
M∑︂
a=1

qara
T

as defined in Eq. (4.10). Specifically, our calculations above show that MSEPoisson

approximates the population-level MSE (i.e., MSEpop) that would be produced if all

of the spike trains in each sub-populations were Poisson processes. The approximation

becomes exact as Na →∞.

Indeed, MSEPoisson shows close agreement with MSEpop (Figure 4.2B, compare

to Figure 4.1D), demonstrating that the deviation of MSEpop away from the values

of MSEmean is consistent with Poisson-like spike-timing variability.

This example shows that homeostatic inhibitory synaptic plasticity can train a

network to detect mismatched stimuli, which is a form of predictive coding. To

better understand how and why the network is able to detect mismatched stimuli,

we consider a fixed point analysis via separation of timescales.

83



Figure 4.3. Slow dynamics are captured by a
separation-of-timescales approximation. A: Firing rates of the model

defined by Eqs. (4.12). Compare to Figures 4.1C and 4.2A. B: MSE
deviation of the firing rates from their targets (MSEmf ; light green) and
the MSE with a Poisson correction (MSEPoisson; dark green) from the
model defined by Eqs. (4.12). Compare to Figures 4.1D and 4.2B. C:

Deviation of the inhibitory weights, wai, from the fixed point values given
in Eqs. (4.14).

4.3.2.2 Separation of Timescales Approximation

In the absence of plasticity (W fixed, e.g., ηe = ηi = 0), fixed point firing rates

would satisfy r0 = f(Wr0 + X). Taking the rectified linear f-I curve from the dy-

namical mean-field model, if there were a fixed point with positive rates (ra > 0 for

all a) then it would be unique and given (as a function of W ) by

r(W ) = [D −W ]−1X = AX (4.11)

whereD = (1/g)Id is a diagonal matrix, Id is the identity matrix, andA = [D−W ]−1.

With W fixed, the Jacobian matrix for the firing rate equation, Eq. (4.6), would be

given by

J = g

⎡⎢⎢⎢⎢⎣
(we1e1 − 1)/τe we1e2/τe we1i/τe

we1e2/τe (we1e1 − 1)/τe we1i/τe

wie1τi wie2τi (wii − 1)/τi

⎤⎥⎥⎥⎥⎦
If the eigenvalues of this matrix have a negative real part, then the fixed point given

by Eq. (4.11) is stable and globally attractive.

84



Due to plasticity, W itself is time-dependent, so this fixed point analysis does not

tell the full story. When plasticity is much slower than the firing rate dynamics (η

sufficiently small and τ sufficiently large, but η should not be compared directly to τ

because they have different dimensions), we can perform a separation of timescales

under which r⃗ relaxes to the quasi-steady-state value given by evaluating Eq. (4.11) at

the current value of W , while W evolves more slowly according to Eq. (4.7). Putting

this together, the separation of timescales approximation is defined by

dW

dt
=

⎡⎢⎢⎢⎢⎣
0 0 −ηe(re1 − re0)ri

0 0 −ηe(re2 − re0)ri

0 0 −ηi(ri − ri0)ri

⎤⎥⎥⎥⎥⎦

r =

⎡⎢⎢⎢⎢⎣
re1

re2

ri

⎤⎥⎥⎥⎥⎦ = [D −W ]−1X = AX

(4.12)

Note that this is a 3-dimensional dynamical system because r is defined by a

functional relationship instead of differential equations. Solving Eqs. (4.12) directly

gives similar results to the full mean-field model and is 482 times more computa-

tionally efficient than the full mean-field simulations (Figure 4.3A, B; 12.5 × 10−3s

to simulate Eqs. (4.12) versus 6.0s for the full mean-field model) primarily because

the slower dynamics allow for a larger time discretization (we used dt = 0.1ms for

the full mean-field and dt = T = 1s to simulate Eqs. (4.12)). Simulating Eqs. (4.12)

was 34751 times faster than the spiking network simulations. This speedup is not

surprising given the lower dimension (2 versus 5000 dimensions) as well as the larger

time discretization.

During training, X is fixed to the “matched” value given by Eq. (4.3). During

this phase, the slow-timescale system described by Eqs. (4.12) has a fixed point for

85



which r = r0 where

r0 =

⎡⎢⎢⎢⎢⎣
r0e

r0e

r0i

⎤⎥⎥⎥⎥⎦
is a vector of the target rates from the plasticity rule. However, this expression

gives the fixed point in terms of r whereas the dynamical system is described by the

dynamics of the entries of W . If the network converges to the target rates during

training, then the weight matrix, W , for the slow system converges to a value, W 0

(or, equivalently, A converges to a value of A0) that satisfies

[︁
D −W 0

]︁−1
Xm = A0Xm = r0 (4.13)

where

Xm =

⎡⎢⎢⎢⎢⎣
X0

e + U

X0
e + V

X0
i

⎤⎥⎥⎥⎥⎦
is the value of X for matched stimuli. Eq. (4.13) is a system of three equations for

three unknowns (we1i, we2i, wii) and its solution is given by

we1i =
r0e − 2gr0ewee − g(U +X0

e )

gr0i

we2i =
r0e − 2gr0ewee − g(V +X0

e )

gr0i

wii =
r0i − 2r0ewie +X0

i

gr0i

(4.14)

Indeed, the weights converged toward these fixed point values during the training

period (before the mismatch stimulus; Figure 4.3C).

When the input is changed by a mismatched stimulus (so X changes away from

its value during training), firing rates deviate from their targets. Using the same

86



quasi-steady state approximation, we can quantify the magnitude of this deviation

as

dr := rmm − r0

= A0rmm − r0

= A0(Xmm −Xm)

= A0dX

(4.15)

where rmm is the vector of firing rates during a mismatched trial, r0 = [r0e r0i ]
T is

the vector of target rates, and

dX = Xmm −Xm =

⎡⎢⎢⎢⎢⎣
0

−V

0

⎤⎥⎥⎥⎥⎦
is the perturbation of the external stimulus away from its training value during the

mismatched trial. This derivation makes it clear that larger perturbations of the

stimulus (larger values of ∥dX⃗∥) generally lead to larger deviations of the firing rates

from their targets (larger values of ∥dr⃗∥). Here and elsewhere, ∥ · ∥ refers to the

Euclidean norm.

Firing rate perturbations, ∥dr∥, are especially large if the input perturbations,

dX, point in a direction in which A0dX is large. Such directions correspond to the

directions indicated by the largest eigenvalue(s) of A0. Since A0 = [D −W 0]
−1
, when

W 0 is much larger than D in magnitude, these directions correspond to directions

indicated by the smallest eigenvalue(s) of W 0. This phenomenon is an instance of

“imbalanced amplification” in which a perturbation that points toward the nullspace

or “approximate nullspace” of the connectivity matrix, W 0, is amplified by the net-

work, see [29] for more in-depth explanations.

Temporarily ignoring the direction of the perturbation, we can make the rough

approximation that ∥dr∥ is approximately proportional to ∥dX∥. This rough approx-

87



imation provides the intuition for mismatched responses shown in the simulations

above. Put simply, mismatched responses are caused by the deviation of a stimulus

away from its “matched” training value, and the magnitude of the mismatched re-

sponse increases with the magnitude of the input perturbation. While this intuition

may seem trivial for this example, its extensions will help explain some non-trivial,

counterintuitive results below.

4.3.3 Distributed and Time-constant Inputs

The example above modeled a stimulus that was homogeneous across each neural

population, i.e., every neuron in population e1 received the same input and every

neuron in population e2 received the same input. Stimulus representations in cortical

circuits can be distributed in an inhomogeneous way across neural populations [75].

We next considered a spiking network model with distributed bottom-up and top-

down inputs (Figure 4.4A). As above, matched and mismatched stimuli were defined

by the presence and absence of top-down input to population e2 (Eqs. (4.3) and (4.5))

to match the bottom-up input to population e1, but these inputs are heterogeneous

vectors (U⃗ and V⃗ ) instead of homogeneous scalars (U and V ). Specifically, matched

and mismatched stimuli to excitatory neurons were defined by

Xe = X0
e + U⃗ + V⃗

}︃
matched (4.16)

and

Xe = X0
e + U⃗

}︃
mismatched. (4.17)

where U⃗ and V⃗ are normally distributed Ne-dimensional vectors,

U⃗ ∼ σsN(0, 1)

V⃗ ∼ σsN(0, 1).

(4.18)

88



mismatch

A
distributed
bottom-up

input

spiking
network

U e

i

distributed
top-down

input

V

training (matched) stimulus

mismatched stimulus

B

U e

i

V

Figure 4.4. Prediction errors after training on distributed
time-constant inputs. Same as Figure 4.1 except bottom-up and

top-down inputs were modeled as distributed stimuli using multivariate
Gaussian inputs vectors (Eq. (4.18)).

Here, N(0, 1) is a standard multivariate normal distribution and σs = X0
e/5 controls

the strength of the stimuli. Importantly, this means that each neuron receives a

different value of top-down and bottom-up input, in contrast to the previous example

(Eq. (4.4) and Figures 4.1–4.3) in which every neuron in the same excitatory sub-

population received the same input.

Simulating this spiking network model shows that population-averaged firing rates

converge to their targets during training on matched stimuli, as expected, but only

deviate slightly from their targets in response to a mismatched stimulus (Figure 4.4C).

We suspected that the deviation of mean excitatory and inhibitory firing rates was

small because some neurons increased their firing rates and some neurons decreased

their firing rates in response to mismatched stimuli, so the increases and decreases

canceled at the level of population averages. Another way to see this is to note

that the expected value of U⃗ and V⃗ is zero, so the absence of V⃗ does not affect

the population-averaged value of the inputs and (under a linear approximation) we

89



should not expect a change in mean firing rates by removing V⃗ . Under this reasoning,

the firing rates of individual neurons would still change in response to a mismatched

stimulus because individual elements of V⃗ are non-zero. This line of reasoning implies

that MSEmean should not increase much for a mismatched stimulus, but MSEpop

should increase more for a mismatched stimulus. Indeed, this is exactly what we

observed in simulations (Figure 4.4D).

In summary, our network model with iSTDP learned to adjust inhibitory weights

in such a way as to “match” or “cancel” top-down input with bottom-up input in

the sense that the firing rates approach their target rates in response to matched

stimuli after sufficient training. Moreover, the network responded to mismatched

stimuli with deviations in the firing rates away from their target values. Note that

the deviation of firing rates from their targets is not a consequence of the mismatch

alone, but is due to the network being trained on matched stimuli. In this sense, the

network is simply detecting deviations in its input patterns from the input patterns

on which it was trained.

4.4 Undetectable Prediction Errors After Training

While instructive, the examples above were restricted to input patterns that were

held fixed during training. In other words, the network only learned to associate one

bottom-up input, U , with one top-down input, V (as schematized in Figure 4.1A, B

and 4.4A, B). Since animals are exposed to multiple stimuli, a more realistic model

would be trained on multiple pairings of top-down and bottom-up inputs. For ex-

ample, in the visuomotor system, head motion (which we can interpret as top-down

input, V ) is coupled with the movement of an animal’s visual stimulus (which we can

interpret as bottom-up input, U). But head motion varies in direction and speed,

and the movement of a visual scene covaries with it. Prediction errors arise whenever

the learned covariation between head motion and visual stimulus is violated, i.e.,

90



A
bottom-up

input
spiking
network

U

e1

e2
i

top-down
input

V

U

e1

e2
i

training (matched) stimulus

mismatched stimulus

B

V

c(t)c(t)

c(t)

mismatch

Figure 4.5. Undetectable prediction errors in a model with
time-varying stimuli. A and B: Network schematic. Same as

Figure 4.1A except for the magnitude of the top-down and bottom-up
stimuli were multiplied by the same time-varying signal, c(t). C-F: Same as
Figure 4.1C-F except we additionally plotted the mean excitatory firing

rates (black curve in C).

whenever there is a mismatch between top-down and bottom-up input [8, 45, 47, 53].

4.4.1 Time-varying Inputs

We next considered a simple extension of the first input model from Figures 4.1–

4.3 to account for top-down and bottom-up inputs with time-varying intensity. Specif-

ically, the excitatory neurons were again broken into two sub-populations, e1 and e2.

During training, each neuron in populations e1 and e2 received external stimuli of

the form (Figure 4.1A)

Xe1 = X0
e + c(t)U

Xe2 = X0
e + c(t)V

⎫⎪⎬⎪⎭ matched (4.19)

91



where c(t) is a scalar time series that changes on each trial. Specifically, c(t) is

drawn independently from a uniform distribution on [0, 2] at the start of each 1s

trial. Hence, the expected value of c(t) is 1, and therefore, the expected values of Xe1

and Xe2 are the same as in the example from Figures 4.1–4.3, but they vary around

this expectation across time. We used similar top-down and bottom-up, but needed

to make the inputs weaker to avoid very large rate deviations,

U = X0
e/20

V = −X0
e/20.

(4.20)

Hence, bottom-up input, c(t)U , is matched by top-down input, c(t)V , during training.

After training on matched stimuli, we again modeled mismatched stimuli by the

absence of top-down input

Xe1 = X0
e + U

Xe2 = X0
e .

⎫⎪⎬⎪⎭ mismatched. (4.21)

The input to e1 is not out of the ordinary during a mismatched stimulus (it corre-

sponds to the value when c(t) = 1 is equal to its expectation) and the input to e2 is

not out of the ordinary either (it corresponds to the value when c(t) = 0), the joint

value of the inputs to e1 and e2 together is out of the ordinary because the inputs

are not matched (see Figure 4.5A for a schematic).

We reasoned that if our iSTDP rule could learn the relationship between top-down

and bottom-up input during training, then it would detect the mismatch between

them by evoking a larger deviation of firing rates from their targets. In other words,

the network should detect the out-of-distribution input represented by a mismatch.

However, our spiking network simulations contradicted this prediction. Firing rates

deviated from the targets even during matched stimuli and the deviation in response

92



to a mismatched stimulus was similar in magnitude (Figure 4.5B–F). Hence, the

response to a mismatched stimulus was not detectable in the sense that it could not

be distinguished from the response to matched stimuli.

4.4.2 A Mean-field Explanation for the Absence of Detection

We now return to our mean-field theory to better understand why we do not see

mismatch responses after training on time-varying inputs, but we do see them after

training on time-constant inputs. We first simulated the dynamical rate model from

Eqs. (4.6)–(4.8) with the time-dependent stimuli defined by Eqs. (4.19)–(4.21). As

above, the dynamical mean-field rate model captured the general trends from the

spiking network simulations (compare Figure 4.6A,B to Figure 4.5C,D). Eq. (4.11)

for the quasi-steady-state firing rates generalizes to

r(W ) = [D −W ]−1X(t) = AX(t) (4.22)

4.4.2.1 Timescale Assumptions of the Stimuli

An assumption underlying Eq. (4.22) is that X(t) changes more slowly than the

timescales (τa for a = e, i) at which firing rates evolve. This assumption is valid in

our case because X(t) switches every 1s while τa ≤ 6ms.

Now we can transition to the slower timescale dynamics of W by re-writing

Eqs. (4.12) as

dW

dt
=

⎡⎢⎢⎢⎢⎣
0 0 −ηe(re1(t)− re0)ri(t)

0 0 −ηe(re2(t)− re0)ri(t)

0 0 −ηi(ri(t)− ri0)ri(t)

⎤⎥⎥⎥⎥⎦

r(t) =

⎡⎢⎢⎢⎢⎣
re1(t)

re2(t)

ri(t)

⎤⎥⎥⎥⎥⎦ = [D −W ]−1X(t) = AX(t)

(4.23)

93



Figure 4.6. Mean-field rate model with time-varying stimuli. Same
as Figure 4.2 except using the time-varying stimuli from Figure 4.5.

where we have only added the explicit time dependence. Simulating this system

shows general agreement with the trends from the spiking networks simulations and

the dynamical mean-field model (Figure 4.7A,B, compare to Figure 4.5C,D and Fig-

ure 4.6A,B).

4.4.2.2 Separation of Timescales over Mean Approximation

Due to the time-dependence of X(t) in the current example, Eqs. (4.23) do not

have a fixed point, so we cannot proceed directly with the fixed point analysis from

above. To perform a fixed point analysis on W , we must assume that plasticity is

Figure 4.7. Slow dynamics captured by a separation of timescales
in a model with time-dependent stimuli. Same as Figure 4.3 except

using the time-varying stimuli from Figure 4.5A-B.

94



slower than the stimulus, i.e., that W (t) changes much more slowly than X(t). This

assumption is valid for our simulations and even more so for biological neural circuits.

Under this assumption, the slow timescale dynamics of W evolve based on the mean

value of X(t). Specifically, we can use the approximation

dW

dt
=

⎡⎢⎢⎢⎢⎣
0 0 −ηe(re1 − re0)ri

0 0 −ηe(re2 − re0)ri

0 0 −ηi(ri − ri0)ri

⎤⎥⎥⎥⎥⎦

r⃗ =

⎡⎢⎢⎢⎢⎣
re1

re2

ri

⎤⎥⎥⎥⎥⎦ = [D −W ]−1X = AX

(4.24)

where

X = Et[X⃗(t)]

and Et denotes the expectation over time during training, i.e., during matched stim-

uli.

During training (for matched stimuli), we have from Eq. (4.19) that

Xm(t) =

⎡⎢⎢⎢⎢⎣
X0

e + c(t)U

X0
e + c(t)V

X0
i

⎤⎥⎥⎥⎥⎦ (4.25)

Since Et[c(t)] = 1, we have that

X =

⎡⎢⎢⎢⎢⎣
X0

e + U

X0
e + V

X0
i

⎤⎥⎥⎥⎥⎦ (4.26)

which is the same as the model from Figures 4.1–4.3. Hence, under this approxima-

95



tion, W should converge to the same fixed point in Eq. (4.14). Notably, this implies

that the time-averaged rates should be equal to the target rates, r = r0. As predicted,

simulations show that average firing rates are close to their targets (Figure 4.7A) and

the weights do converge to the given fixed point with the addition of some noise

(Figure 4.7C) coming from the noisy time-dependence of X(t) and r(t).

Therefore, the state of the network (as represented by W ) after training is similar

for the networks with time-constant and time-dependent stimuli. As a result, the

deviation, dr(t), of the firing rates from their targets on any given trial takes the

same form derived in Eq. (4.15),

dr(t) := r(t)− r0

= A0X(t)− r⃗0

= A0(X(t)−X)

= A0dX(t)

(4.27)

where dX(t) = X(t) − X is the deviation of the stimulus from the mean value it

takes during training and A0 is the fixed point of A = [D −W ]−1 after training (see

Eq. (4.13) and surrounding discussion). This conclusion assumes that the mean-field

approximation in Eq. (4.22) is approximately accurate or, more specifically, that the

firing rate response to a perturbation is approximately a linear function of the input

perturbation. This, in turn, requires that the input perturbation is not too strong.

As a heuristic, we can ignore the effect of A0 in Eq. (4.6) and make the approxi-

mation that dr(t) is larger whenever dX(t) is larger. In other words,

∥dr(t)∥ = ∥A0dX(t)∥

≈ ∥A0∥∥dX(t)∥

∝ ∥dX(t)∥.

(4.28)

96



U (bottom-up)

V
 (t

op
-d

ow
n)

mismatch

B

matches
(training)

×

U (bottom-up)

V
 (t

op
-d

ow
n) match (training)

mismatch

A time-constant inputs
(as in Figures 1-3)

time-dependent inputs
(as in Figures 5-7)

Figure 4.8. Schematic illustrating why mismatch responses are
detectable after training on time-constant, but not

time-dependent stimuli. A: Schematic representing inputs to the
network in a model with time-constant stimuli. Training stimuli occupy a
single point in (U, V ) space (purple dot). The deviation of firing rates from
their targets on any particular trial is approximately proportional to the
distance of the input from its value during training (Eq. (4.15)). Since the
mismatch stimulus (orange dot) is far from the matched, training stimulus,

firing rates deviate from their target in response to the mismatched
stimulus (as seen in Figures 4.1–4.3). B: Schematic representing inputs to
the network in a model with time-varying stimuli. Training stimuli (purple

dots) vary in (U, V ) space along a predictable line. The mismatched
stimulus lies far from this line. However, the deviation of firing rates from
their targets on any particular trial is approximately proportional to the
distance of the input from its mean value during training (Eq. (4.15)).

Since the distance between the mismatch input (orange dot) and the mean
training stimulus (purple x) is similar to the typical distance between the
individual training stimuli (purple dots) and the mean training stimulus
(purple x), the deviation of the firing rates from their targets is similar for

matched and mismatched stimuli.

97



where ∥A0∥ denotes the induced Euclidean norm on A0. In other words, stimuli

that are further from the mean training stimuli evoke larger firing rates. Note that

we necessarily have ∥A0dX(t)∥ ≤ ∥A0∥∥dX(t)∥, so this assumption is saying that

∥A0dX(t)∥ is not much smaller than ∥A0∥∥dX(t)∥. This approximation assumes

that dX(t) is not close to being orthogonal to the rows of A0.

During matched stimuli, combining Eqs. (4.25) and (4.26) gives the perturbation

for training stimuli

dXm(t) =

⎡⎢⎢⎢⎢⎣
(1− c(t))U

(1− c(t))V

0

⎤⎥⎥⎥⎥⎦ .

Since |U | = |V |, we have

∥dXm(t)∥2 = 2(1− c(t))2|V |

= 2u2(t)|V |

where u(t) = 1−c(t) is uniformly distributed on [−1, 1]. Hence, the squared distance

of X(t) from its mean varies between 0 and 2|V |. During the mismatched stimulus,

we have from Eq. (4.21), that

Xmm =

⎡⎢⎢⎢⎢⎣
X0

e + U

X0
e

X0
i

⎤⎥⎥⎥⎥⎦
Combining this with Eq. (4.26) shows that, during a mismatched stimulus, the input

perturbation is

dXmm =

⎡⎢⎢⎢⎢⎣
0

−V

0

⎤⎥⎥⎥⎥⎦

98



and therefore

∥dXmm∥2 = |V |.

Hence, the deviation of the external input, X(t), from its mean value during training

is similar in magnitude during matched and mismatched stimuli. As a result, the

deviation of the firing rates from their targets is also similar during matched and

mismatched stimuli, so the mismatch is not detectable based on the deviation of

firing rates from their targets alone.

This intuition, and how it differs from the time-constant model of Figures 4.1–4.3,

is illustrated in Figure 4.8. For the model with time-constant inputs, there is only

one stimulus during matched, training trials (Figure 4.8A, purple dot). Since the

mismatch stimulus is far from this matched stimulus, the firing rate deviates from its

target in response to the mismatched stimulus (as demonstrated in Figures 4.1–4.3).

For the model with time-varying stimuli, there are multiple training stimuli that lie

along a line (Figure 4.8B, purple dots). While the mismatch stimulus is clearly away

from this line (Figure 4.8B, orange dot), the deviation of the firing rates from their

targets is approximately proportional to how far an input is from the mean training

stimulus (Figure 4.8B, purple x). Since this distance is similar for the mismatch

stimulus and a typical training stimulus, the deviation of the firing rates from their

targets is also similar during matched and mismatched stimuli (as demonstrated in

Figures 4.5–4.7). While this intuition might seem obvious in hindsight, the complexity

of dynamics in recurrent spiking neural network models can make this conclusion

difficult to foresee without the benefit of the mean-field analysis provided here.

4.4.3 Distributed and Time-varying Inputs

For the sake of completeness, we also considered a model with distributed, time-

varying stimuli. Specifically, we combined the time-varying stimuli from the example

99



A
distributed
bottom-up

input

spiking
network

U e

i

distributed
top-down

input

V

training (matched) stimulus

mismatched stimulus

B

U e

i

V

c(t)c(t)

c(t)

Figure 4.9. Prediction errors after training on distributed
time-dependent inputs. Same as Figure 4.4 except bottom-up and

top-down inputs were time-dependent, as described by Eqs. (4.29)–(4.30).

in Figure 4.7 with the distributed stimuli from the example in Figure 4.4 to get inputs

of the form (Figure 4.9A,B)

Xe = X0
e + c(t)U⃗ + c(t)V⃗

}︃
matched (4.29)

and

Xe = X0
e + U⃗

}︃
mismatched. (4.30)

where c(t) is a scalar drawn from a uniform distribution on [0, 2] on each trial, and U⃗

and V⃗ are normally distributed Ne-dimensional vectors as in Eq. (4.18). Unsurpris-

ingly, given the failure of the simpler example discussed above, the spiking network

model did not produce an easily detectable response to mismatched stimuli (Fig-

ure 4.9C-F). Specifically, the deviation of the firing rates away from their targets was

similar in matched and mismatched trials (Figure 4.9C,D).

100



4.5 Generalization

The mean-field analysis above relied on several assumptions that were used to

derive approximations. This raises the question of how general our conclusions are.

Specifically, for which network models does the argument above imply an absence of

noticeable mismatch responses? To answer this question, we can distill the argument

above into three fundamental assumptions:

1. The linear approximation in Eq. (4.6) should be approximately accurate,

dr(t) ≈ A0dX(t)

While this assumption is strong, it should be satisfied when dX(t) is sufficiently
small. In addition, balanced excitation and inhibition linearize the firing rate
responses of networks to external input [2, 29, 52, 56, 72, 83], so this assump-
tion should hold in networks with balanced excitation and inhibition, which is
encouraged by inhibitory synaptic plasticity [3, 10, 40, 85].

2. The approximation in Eq. (4.28) should be accurate, specifically

∥A0dX(t)∥ ≈ ∥A0∥∥dX(t)∥

which requires that dX(t) not be close to orthogonal to the rows of A0.

3. The magnitude of the input perturbations for a mismatched stimulus should be
similar to a typical value during matched stimuli,

∥dXmm∥ ≈ ∥dXm(t)∥

In general, if a model satisfies these three assumptions then dr(t) is similar in magni-

tude during matched and mismatched stimuli. Note that these assumptions are suffi-

cient, but not necessary for a lack of mismatch responses. For example, if assumption

1 is violated because the rate perturbations are nonlinear, then the nonlinear model

might still not compute mismatch responses.

Strictly speaking, assumption 2 is stronger than needed. Instead, we only need

that the relationship between A0 and dX is similar for matched and mismatched

101



stimuli, i.e., that

∥A0dXm(t)∥
∥A0∥∥dXm(t)∥

≈ ∥A0dXmm∥
∥A0∥∥dXmm∥

which is a weaker assumption because it allows for dX to be aligned with the rows

of A0 so long as the alignment is similar for matched and unmatched stimuli.

For our examples in which the network is trained on time-constant input (Fig-

ures 4.1–4.4), we have that Xm(t) = X, so dXm(t) = 0 whereas dXmm ̸= 0, so

assumption 3 above is not met. This explains why our examples trained on time-

constant were able to produce robust mismatch responses.

In previous work [42], a network with homeostatic plasticity successfully computed

prediction errors after training on time-varying stimuli. In that work, the weights

of the connectivity matrix were carefully chosen so that A was singular and the

directions of the input perturbation during matched stimuli (the “feedback” stimulus

condition) were in the null space of A0. See equation 28 in their appendix and note

that A0 was called W in their analysis. As a result, the model studied there does not

satisfy assumption 2 above. This explains how [42] were able to compute prediction

errors with time-varying inputs.

4.5.1 Networks with External Input to Inhibitory Populations

In all of the examples we have considered so far, external input was provided

to excitatory neurons only. However, our analysis implies that our overall results

should still hold if the input is provided to inhibitory neurons as well. Specifically,

in Eqs. (4.6) and the surrounding equations and analysis, there is nothing prevent-

ing dX(t) from having a non-zero component for the inhibitory population(s). To

verify this prediction, we repeated all of the spiking network simulations (those in

Figures 4.1, 4.4, 4.5, and 4.9) in models in which external input was also added to

the inhibitory population. Our results show the same overall conclusions for all fig-

102



A
bottom-up

input
spiking
network

U

e1

e2
i

top-down
input

V

U

e1

e2
i

training (matched) stimulus

mismatched stimulus

B

V

time-constant training stimulus time-varying training stimulus

Figure 4.10. Similar results are obtained with input to inhibitory
populations. A, B: Network schematics. Same as Figure 1A, B except

top-down external input was provided to the inhibitory population as well.
C, D: Same as Figure 1C, D except top-down external input was provided
to the inhibitory population as well. E, F: Same as Figure 4.5C, D except
top-down external input was provided to the inhibitory population as well.

ures. Specifically, in all examples, a noticeable mismatch response was observed after

training on time-constant inputs, but not after training on time-varying inputs.

We empirically test whether our conclusions were sensitive to the assumption

that only excitatory neurons received external input by repeating some simulations

from the main text with external input provided to the inhibitory populations as

well. Figure 4.10 shows results from a simulation in which top-down input was

provided to the inhibitory population in addition to population e2 during training.

For the mismatched stimulus, the top-down input was removed from the inhibitory

population and from population e2. Specifically, in Figure 4.10C,D, we used

Xe1 = X0
e + U

Xe2 = X0
e + V

Xi = X0
i + V

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
matched

103



and

Xe1 = X0
e + U

Xe2 = X0
e

Xi = X0
i

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
mismatched

where

U = X0
e/5

V = −X0
e/5.

which is identical to Figure 4.1 from the main text, but with input V provided to i

as well in Figure 4.10E,F, we used

Xe1 = X0
e + c(t)U

Xe2 = X0
e + c(t)V

Xi = X0
i + c(t)V

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
matched

and

Xe1 = X0
e + U

Xe2 = X0
e

Xi = X0
i

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
mismatched.

where

U = X0
e/20

V = −X0
e/20.

This is identical to Figure 4.5 from the main text, but with input, V provided to i

as well. Our results in Figure 4.10) show a strong mismatch response after training

on time-constant input, but not time-varying input.

We additionally tested whether similar results were obtained for distributed ex-

ternal input provided to the inhibitory and excitatory populations in Figure 4.11.

104



time-constant training stimulus time-varying training stimulusA
distributed
bottom-up

input

spiking
network

U
e

i

distributed
top-down

input

V

training (matched) stimulus

mismatched stimulus

B

e

i

V
U

Figure 4.11. Similar results are obtained with distributed inputs to
inhibitory populations. A, B: Network schematics. Same as Figure 4A,

B except distributed external input was provided to the inhibitory
population as well. C, D: Same as Figure 4.4C, D except top-down external
input was provided to the inhibitory population as well. E, F: Same as
Figure 4.9C, D except top-down external input was provided to the

inhibitory population as well.

105



Specifically, in Figure 4.11C,D, we used

Xe = X0
e + U⃗e + V⃗e

Xi = X0
i + U⃗i + V⃗i

⎫⎪⎬⎪⎭ matched

and

Xe = X0
e + U⃗e

Xi = X0
i + U⃗i

⎫⎪⎬⎪⎭ mismatched.

where U⃗a and V⃗a are normally distributed Na-dimensional vectors,

U⃗a ∼ σsN(0, 1)

V⃗a ∼ σsN(0, 1)

for a = e, i. This is identical to Figure 4.4 from the main text except distributed

input was provided to the inhibitory population as well. In Figure 4.11E,F, we used

Xe = X0
e + c(t)U⃗e + c(t)V⃗e

Xi = X0
i + c(t)U⃗i + c(t)V⃗i

⎫⎪⎬⎪⎭ matched

and

Xe = X0
e + U⃗e

Xi = X0
i + U⃗i

⎫⎪⎬⎪⎭ mismatched.

which is identical to Figure 9 from the main text except distributed input was pro-

vided to the inhibitory population as well. Our results in Figure 4.11 show a strong

mismatch response after training on time-constant distributed input, but not time-

varying distributed input.

In conclusion, adding external input to the inhibitory population does not quali-

tatively affect our overall findings.

106



4.5.2 Networks with Increasing Mismatch Stimuli

Assumption 3 above implies that mismatch responses could be possible after train-

ing on time-varying stimuli if the mismatch stimulus is larger in magnitude than the

matched stimuli used during training. While this is not necessarily a surprising find-

ing (a larger stimulus should evoke a larger response), we decided to test it in a

simulation. Specifically, we repeated the simulation from Figure 4.5, but we scaled

the magnitude of the mismatched input by a factor of six. These simulations confirm

that a mismatch response was produced in this case.

We next repeated the simulation from Figure 4.5 of the main manuscript but

increased the strength of the mismatched stimulus. In particular, we set

Xe1 = X0
e + c(t)U

Xe2 = X0
e + c(t)V

Xi = X0
i

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
matched

and

Xe1 = X0
e + 6U

Xe2 = X0
e

Xi = X0
i

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
mismatched.

In this case, the mismatched stimulus has a larger magnitude than any of the matched

stimuli used for training (in addition to the mismatch that occurs). As predicted, we

observed a pronounced mismatch response in this case 4.12)

4.5.3 Networks with More Sub-populations

In all of the examples above, we considered only a single inhibitory population

and at most two excitatory populations. In reality, there are multiple inhibitory neu-

ron subtypes in the cortex and previous work on mismatch responses with inhibitory

107



Figure 4.12. Mismatch responses are observed with stronger
mismatched stimuli. A, B: Same as Figure 4.5 except the strength of the

mismatched input was increased by six-fold.

plasticity accounts for this [41, 42]. Our analysis above implies that increasing the

number of neuron populations alone should not affect our overall conclusions. To test

our findings empirically on a model with several neural populations, we performed

a simulation that was identical to the simulation in Figure 4.5 except we used three

inhibitory and three excitatory populations. Consistent with our theoretical predic-

tions, the results were qualitatively similar to those in Figure 4.5: After training on

time-dependent stimuli, there was no noticeable deviation of firing rates in response

to a mismatched stimulus.

In all examples considered so far, we considered a single inhibitory population

and one or two excitatory populations. We next tested whether including more

populations would affect our results. Specifically, we repeated the simulations from

Figure 5, but we broke the excitatory and inhibitory populations each into three

subpopulations in Figure 4.13. During training (matched stimuli), populations e1 and

i1 received bottom-up input from U , and populations e2 and i2 received top-down

108



input from V . And populations e3 and i3 received no external input. Specifically,

Xe1 = X0
e + c(t)U

Xe2 = X0
e + c(t)V

Xe3 = X0
e

Xi1 = X0
i + c(t)U

Xi2 = X0
i + c(t)V

Xi3 = X0
i

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

matched

and

Xe1 = X0
e + U

Xe2 = X0
e

Xe3 = X0
e

Xi1 = X0
i + U

Xi2 = X0
i

Xi3 = X0
i .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

mismatched.

Our results in Figure 4.13C and D show no visible mismatch response, consistent

with our original findings from Figure 4.5. Hence, simply adding more populations

does not change our overall findings. This is consistent with the conclusions reached

by our theoretical arguments in the previous chapters.

4.6 Discussion

We combined numerical simulations of spiking networks and mean-field rate mod-

els with mathematical analysis to evaluate the extent to which homeostatic inhibitory

synaptic plasticity can train an unstructured network to compute prediction errors.

We found that the networks successfully learn to compute prediction errors when

109



A
bottom-up

input
spiking
network

U

top-down
input

training (matched) stimulus

B

e1 e3 e2

i1 i3 i2
V

U

mismatched stimulus

e1 e3 e2

i1 i3 i2
V

Figure 4.13. Mismatch responses are not observed when more
populations are considered Same as Figure 4.5 except more populations

were added. Connections between populations are not shown for the
simplicity of the diagram.

110



training stimuli are static. Specifically, if top-down and bottom-up inputs are fixed

in time during training, then firing rates in the trained network will maintain baseline

firing rates in response to stimuli that match the training stimuli, but firing rates will

deviate from their baseline levels in response to mismatched stimuli. This result holds

when stimuli are uniform (with each of a few sub-populations receiving homogeneous

external input) or when stimuli are distributed (with each neuron receiving distinct,

but time-constant levels of external input during training).

To our surprise, simulations showed that even under a simple model of time-

varying stimuli, in which bottom-up and top-down inputs are modulated by the same

time-varying factor, the same networks fail to produce reliable mismatch responses

after training. Specifically, firing rates deviate from their baseline levels by a similar

amount in response to stimuli that are matched (a shared modulation, as in train-

ing) or mismatched (one input is modulated differently than the other). We used a

mean-field approximation to explain these empirical findings and elucidate a set of

conditions under which robust mismatch responses do not occur. Our results, there-

fore, help to clarify the extent to which homeostatic inhibitory synaptic plasticity is

sufficient to train a network to compute mismatch responses.

For networks trained on time-varying inputs, our results show a lack of mismatch

responses in the sense that firing rates do not deviate from their baseline (when

a deviation is measured by mean-squared error) more during mismatched inputs

than they do for matched stimuli. However, mismatch responses could potentially

be detected by some linear projection of the firing rates and this linear projection

could be fed as input to a readout neuron that would be able to detect mismatch

responses. However, our main goal was to understand the situations under which a

natural homeostatic plasticity rule would spontaneously produce elevated responses

to mismatched stimuli. Training a separate linear projection is outside the scope of

this goal.

111



Inhibitory homeostatic synaptic plasticity is only one of many homeostatic mech-

anisms in the brain [81]. While homeostatic plasticity is one candidate mechanism

for predictive coding, other homeostatic mechanisms could play a role as well. Future

work should consider the potential role of other homeostatic mechanisms in predictive

coding and mismatch detection.

Previous work [41, 42] found that networks with homeostatic plasticity can learn

to compute mismatch responses in models with time-varying stimuli that are similar

to the time-varying stimuli that we used (in the cases where our networks failed).

They used a more biologically detailed network model with multiple inhibitory sub-

types and multi-compartment excitatory neurons. Importantly, connectivity in their

model was constrained so that matched stimuli were in the nullspace of the effective

connectivity matrix (A in our work, W in theirs). Our theoretical analysis agrees

with their analysis showing that this assumption is necessary for their overall results.

We additionally provided a set of conditions under which more general classes of

models will not produce robust mismatch responses, which generalizes some of the

theoretical results in [42] to more general classes of networks. The requirement that

matched stimuli are in the null space of the effective connectivity matrix is a strong

assumption because it implies that the connectivity matrices must be precisely tuned.

Moreover, the dimension of the null space of the connectivity matrix must match the

dimensionality of the training stimuli, which could make it difficult to train a network

to maintain baseline firing rates on a higher dimensional space of training stimuli.

Our study and the previous work described above [41, 42] incorporates homeo-

static synaptic plasticity, but do not account for any other of the wide variety of

synaptic plasticity rules observed in neural recordings. Other work has shown that

predictive coding can be learned in carefully constructed networks using learning

rules that are not exclusively homeostatic [14]. Indeed, our approach of learning

prediction errors in unstructured, randomly connected networks could potentially be

112



made successful if the target rates, ra0 , were effectively modulated by the top-down or

bottom-up input. Future work should consider the possibility of learning prediction

errors in unstructured, random networks by combining these approaches.

113



CHAPTER 5

LEARNING FIXED POINTS IN RECURRENT NEURAL NETWORK MODELS

This chapter is adapted from my most recent and ongoing work.

In the previous chapter, we evaluated whether synaptic plasticity can learn to

detect some prediction errors in unstructured networks. To continue the same direc-

tion of neuron communication and learning, this chapter focuses on learning the fixed

point of firing rates through the connection between BRNNs and ARNNs in machine

learning that we developed in Chapter 3.

In ARNNs, neurons communicate through activations, i.e., y = f(Wx) where f

is a continuous real-valued function such as ReLu, x is a vector of presynaptic activa-

tions, W is a connectivity weight matrix, and y is the output responses. Theorem

2, Eq. (3.5) from our previous work established such a direct relationship between

fixed point firing rates in biologically realistic cortical circuit models and fixed point

activations in ARNNs [10]. Specifically, hidden state activations in ARNNs with

ReLu activations obey equations of the form

ht+1 = [W recht + xt]
+ (5.1)

We now try to understand how to train the recurrent connections, W , from a

static input perspective, xt = x, and perform supervised learning on the fixed points,

r, with a connectivity weight update in a form of

∆W = ηF (W,hl,x).

114



We found that the standard gradient descent with respect to W is ineffective because

of singularities that arise in the fixed point equation y = f(Wy + x). However,

gradient descent on a re-parameterized model gives a better update rule for entries of

W and more stable learning dynamics. Under a linear approximation, this geometry

also performs faster learning. In addition, we have extended the results to properly

account for nonlinearities and applied them to non-trivial machine learning bench-

marks. These results improve our understanding of synaptic plasticity rules in the

brain, and also inspire new learning rules for artificial recurrent neural networks used

in machine learning.

5.1 Introduction

RNNs are widely used in machine learning and in computational neuroscience. In

machine learning, they are typically used to learn dynamical responses to time series

inputs. In computational neuroscience, they are sometimes used to model dynamical

responses of neurons to dynamical stimuli [79, 80], but are also often used to model

stationary, fixed point neural responses to static inputs. For example, models of

visual cortical responses and related phenomena like surround suppression often rely

on models of recurrently connected model neurons [10, 24, 29, 30, 65, 74]. Typically,

in this approach, the neural response is modeled as a fixed point of the recurrent

dynamics.

The natural approach to learning fixed points of recurrent neural networks is to

use direct gradient descent on the recurrent weight matrix after the network has con-

verged toward a fixed point. A direct application of this approach, called “truncated

backpropagation through time” can be computationally expensive because it requires

the application of backpropagation through time on a computational graph unrolled

over many time steps. Some numerical approximations have been developed and

other approaches have been developed that use the implicit equation for fixed points

115



to derive the exact gradients of the loss with respect to the weight matrix at the

exact fixed point, or some approximations to this quantity [4, 55, 64, 66, 92]. These

approaches can also be computationally expensive because the gradient derived from

the implicit equation involves the matrix inverses, which either need to be computed

directly or approximated using, for example, iterative methods.

In this work, we show that, in addition to being computationally expensive, gra-

dient descent on the recurrent weight matrix can lead to poor learning performance

because the associated loss landscape has singularities and other features that make

it poorly conditioned for gradient-based learning.

Several authors have argued that the default practice of performing gradient de-

scent with respect to the Euclidean gradient of the loss with respect to weights should

not always be assumed to be the optimal approach to learning. In machine learn-

ing applications, non-Euclidean gradients informed by information theory, such as

the natural gradient have been argued to be superior [5, 6, 59]. In computational

neuroscience, the use of a Euclidean gradient implicitly assumes a specific choice of

units for each quantity in a mode, and, more generally assumes a specific parame-

terization of the biological model [78]. Different units or different parameterizations

of a biological model will yield different gradients and ultimately different learning

dynamics. Hence, gradient descent using the Euclidean gradient of the loss with re-

spect to synaptic weights under a specific choice of parameterization and units might

not capture learning dynamics or learned representations in biological neuronal net-

works [78].

We derive learning rules for fixed point of recurrent neural networks under a nat-

ural re-parameterization of the network model. The two resulting learning rules can

be interpreted as steepest descent and gradient descent on the weight matrix with

respect to a non-Euclidean metric and gradient, respectively. We demonstrate empir-

ically that both of these learning rules exhibit more robust learning dynamics than

116



direct gradient descent on the recurrent weight matrix under the Euclidean geometry

on weights. Moreover, one of the two new learning rules is computationally more effi-

cient than gradient descent on the recurrent weight matrix under Euclidean geometry

because its exact implementation does not require the computation of inverses, the

unrolling of a computational graph, or other iterative methods to compute the weight

update after fixed points and their loss have been computed.

Our results demonstrate that standard gradient-based learning methods are not

ideal for training fixed points of recurrent neuronal networks, but an alternative

learning rule is more robust and computationally more efficient.

5.2 Fixed Point Firing Rate Model and Machine Learning Tasks

5.2.1 Firing Rate Model Descriptions

We consider a recurrent neural network (RNN) model of the form [27, 32, 79, 80]

τ
dr

dt
= −r+ f(Wr+ x) (5.2)

where r(t) ∈ RN is a vector of model firing rates, τ > 0 is a time constant,W ∈ RN×N

is a recurrent connectivity matrix, x ∈ RN models external input to the network,

and f : R → R is a non-negative, non-decreasing activation function or “f-I curve”,

which is applied point-wise. For a time-constant input, x(t) = x in Figure5.1A, the

fixed point firing rates satisfy

r = f(Wr+ x). (5.3)

117



5.2.2 Fixed Point Stability

The stability of fixed point firing rates from Eq. (5.2) is determined by the eigen-

values of the Jacobian matrix,

J =
1

τ
[−I +GW ] (5.4)

where G = diag(f ′(z)) is a diagonal matrix with entries

Gjj = f ′(zj)

and z = [Wr+ x] is the vector of neural inputs or pre-activations evaluated at their

fixed points. Specifically, a fixed point is hyperbolically stable if all eigenvalues of J

have a negative real part. For a simple example in Figure 5.1B, G is the identity,

then the corresponding eigenvalues of J satisfied

Λ(J) =
1

τ
[−1 + Λ(W )]

where Λ(W ) denotes the eigenvalues set of W . Hence, stable fixed points require

that all the eigenvalues of W have a real part less than 1 (points within the blue unit

circle in Figure 5.1B).

5.2.3 Supervised Learning

In machine learning applications, RNNs are typically used to learn mappings from

input time series, x(t), to output time series, r(t), and they are often trained by using

backpropagation through time. In computational neuroscience, RNNs of the form in

Eq. (5.2) are often studied for their fixed point properties, for example, to study

orientation selectivity and surround suppression among other phenomena [10, 24, 29,

30, 65, 74], but the weights in these studies are often chosen by hand, not learned.

118



A

1.0 0.5 0.0 0.5 1.0
real( )

1.0

0.5

0.0

0.5

1.0

im
ag

(
)

B

5.0 2.5 0.0 2.5 5.0
I=Wr+X

0

1

2

3

4

5

f(I
)

C

0 250 500 750 1000
time

0.05

0.00

0.05

0.10

0.15
ra

te
s,

 r(
t)

D

Figure 5.1. Training fixed point from a recurrent neural network
A: Diagram of a recurrent neural network (RNN) with static input, i.e.,
regression or image data trained to produce fixed point firing rate output.
B): Eigenvalues of connectivity matrix, W . The unit circle is shown in

blue. Stability requires that the eigenvalues of W have a real part less than
1. C: Rectified linear function used as an “f-I” curve, where G = Id in
Eq.2.22. D: Fixed point firing rates using rectified linear simulation for
1000 ms in C. The fixed point dynamic described 6 randomly selected

neurons of the RNN in A with a size of N = 200, neurons connectivity are
under the stability in B, the external input is generated from

N−dimensional linear regression synthetic data with some noise.

119



As a combination of these perspectives, we are interested in learning mappings from

static inputs, x(t) = x, to their associated fixed points, r, given by Eq. (5.3) in

Figure 5.1A, C and D.

Specifically, consider a supervised learning task with a cost function of the form

J =
1

m

m∑︂
i=1

L(ri,yi)

where xi is an input, yi is a label, L is a loss function, and ri = f(Wri + xi) is

the fixed point that the network converges to under input xi. This learning task

presents unique challenges because fixed points are defined implicitly by Eq. (5.3)

instead of explicitly as a function of x, and also because we only wish to learn stable

fixed points.

The data set {(xi,yi)}i can be the entire data set in the case of full-batch learning

or a mini-batch in the case of stochastic learning. Updates to W during learning can

be written as

W ← W +∆W

where

∆W =
1

m

m∑︂
i=1

∆W i

Here, ∆W i is an update rule that can depend on xi, yi, and ri. Below, we derive

and compare three different update rules, ∆W i
1, ∆W i

2, and ∆W i
3, for minimizing J .

5.2.4 Gradient Descent on the Recurrent Weight.

The first learning rule we consider is the direct gradient descent of the loss surface

with respect to W ,

∆W i
1 = −ηW∇WL(ri,yi) (5.5)

120



where ηW > 0 is a learning rate. If the fixed point, ri, is hyperbolically stable,

then the Jacobian J from Eq. (2.22) has eigenvalues with negative real part, so

I −GiW = −τJ is invertible and we have (see Appendix A.1)

∆W i
1 = −ηWGi

[︁
I −GiW

]︁−T
(∇riL)

(︁
ri
)︁T

. (5.6)

where Gi = diag(f ′(zi)) evaluated at the fixed point ri and U−T denotes the inverse

transpose of a matrix, U . If Gi
jj ̸= 0 for all j, then [Gi]

−1
exists so we can simplify

Eq. (5.6) to

∆W i
1 = −ηW

[︂[︁
Gi
]︁−1 −W

]︂−T

(∇riL)
(︁
ri
)︁T (5.7)

Evaluating Eqs. (5.6) and (5.7) is computationally expensive because they require

the calculation of a matrix inverse. While some approaches have been developed to

make the computation of the update more efficient [4, 55, 64, 66, 92], we also find

in examples below that this update rule can lead to poor learning performance. We

next propose an alternative learning rule based on a nonlinear reparameterization of

the model.

5.3 Newly Developed Learning Rules

5.3.1 Nonlinear Reparameterizing of the RNNs

To motivate the reparameterized model, first consider the special case of a linear

network defined by

f(x) = x

In this case, G = I is the identity matrix and Eq. (5.3) for the fixed point can be

written as

r = [I −W ]−1x.

121



This is a linear model in the sense that r is a linear function of x, but the nonlinear

dependence of r on W (especially a nonlinearity involving a matrix inverse) makes

for the complicated and computationally expensive update from Eq. (5.6). Instead

of performing gradient descent with respect to W , we propose instead to first apply

a nonlinear change of coordinates to obtain new parameters,

A = F (W ) := [I −W ]−1. (5.8)

If we parameterize the model in terms of A instead of W , then fixed points satisfy

the standard linear model

r = Ax.

Gradient descent of the loss with respect to A gives the standard update rule for a

linear, single-layer perceptron

∆Ai = −ηA∇AL(r
i,yi)

= −ηA (∇riL)
(︁
xi
)︁T

= −ηA (∇riL)
(︁
ri
)︁T

A−T

(5.9)

where we distinguish between the learning rate, ηA, used for the re-parameterized

model, and the learning rate ηW used for the original parameterization. Eq. (5.9)

gives a gradient-based update to the new parameter, A, but our original RNN model

is parameterized by W . To update our original parameters, we need to change the

∆A from Eq. (5.9) back to W coordinates. To do this, note that we want to find a

value for ∆W that satisfies A + ∆A = F (W + ∆W ) whenever A = F (W ) and ∆A

comes from Eq. (5.9). In other words, the update to W is given by

∆W i
2 = F−1(F (W ) + ∆Ai))−W

= −
[︂
[I −W ]−1 − ηA (∇riL)

(︁
ri
)︁T

[I −W ]T
]︂−1

+ I −W
(5.10)

122



where F−1(A) = I − A−1 is the inverse of F (W ).

To summarize this approach, if Eq. (5.10) is used to update parameters, W ,

under the linear fixed point model, r = f(Wr+ x) with f(x) = x, then the learning

dynamics will be identical to a standard linear regression of parameters, A, on the

model r = Ax using learning rate ηA

Since gradient descent with respect to A in Eq. (5.9) represents steepest descent

of the loss surface in the new parameter space of A and since Eq. (5.10) gives the

same updates in the original parameter space of W , the learning rule in Eq. (5.5)

corresponds to steepest descent of the loss surface using a non-Euclidean metric

defined by

d(W1,W2) = ∥F (W1)− F (W2)∥E

where ∥B∥E =
√︁
Tr(BBT ) is the Euclidean or Frobenius norm on matrices. Note

that d(·, ·) is a metric when restricted to the space of all matrices, W , for which I−W

is invertible. Hence, if we restrict to W that yield hyperbolically stable fixed points,

Eq. (5.5) corresponds to steepest descent with respect to a non-Euclidan metric,

but the metric d is not necessarily generated by an inner product, so Eq. (5.10)

cannot be called gradient descent on a non-Euclidean geometry since the notion of

geometry requires a metric induced by an inner product. In Section 5.3.1, we show

that an approximation to ∆W i
2 produces gradient descent on non-Euclidean geometry.

Moreover, in Section 5.4, we present examples showing that steepest descent with

respect to a non-Euclidean metric, as defined by ∆W i
2, is better suited to learning

fixed points than the standard approach to gradient descent represented by ∆W i
1.

Eq. (5.10) was derived for the specific case f(x) = x, but we can extend it to a

model with arbitrary f(x). To do so, we first linearize Eq. (5.3) to obtain a linearized

fixed point equation,

r = G[Wr+ x] (5.11)

123



which has a closed-form solution given by

r = [I −GW ]−1Gx. (5.12)

Note, again, that I − GW is invertible whenever r is a hyperbolically stable fixed

point.

Given Eq. (5.12), a natural choice of new parameters would be

A = [I −GW ]−1G, (5.13)

because it would produce a (linearized) model of the form r = Ax. Note that under

the linear model f(z) = z, we have G = I, and recover the parameterization in

Eq. (5.8), so Eq. (5.13) is a generalization of Eq. (5.8). However, the update rule

to W derived from gradient descent on A from the parameterization in Eq. (5.13)

is susceptible to blow up or singularities when some values of Gjj = f ′(zj) become

small in magnitude or zero. To see why this is the case, suppose Gjj = O(ϵ) is small

for some j and consider an update to W of the form W = W + ∆W . Then the

resulting update to rj is, to linear order in ϵ,

∆rj =
∑︂
k

Gjj∆Wjkrk

= O(ϵ∆W ).

On the other hand, an update of the form A = A+∆A gives

∆rj =
∑︂
k

∆Ajkrk

= O(∆A).

Hence, if we want ∆W to produce the same change, ∆r, produced by ∆A, then

124



we must have ∆W ∼ O(∆A/ϵ). These large updates to W will cause dramatic

changes to W in response to inputs for which G has small elements at the fixed

point, ultimately undercutting the model’s performance (see Appendix A.2 for more

details). In the extreme case that Gjj = 0 for some j, updates to W do not impact

r (i.e., ∆rj = 0 for any ∆W under the linear approximation r = G[Wr+ x]), so we

cannot derive a ∆W to match a given ∆A, i.e., the reparameterization in Eq. (5.13)

is ill-posed.

To circumvent these problems, we instead take the parameterization

A = F (W ) := [G−GWG]−1 (5.14)

in place of Eq. (5.13). Under the linearized fixed point equation in Eq. (5.11), we

then obtain the linear model

r = GAGx. (5.15)

This equation is linear in x and in the new parameters, A. Hence, learning A

is again a linear regression problem, albeit with the extra G terms. These extra G

terms prevent singularities and blowup when Gjj terms become small or zero because

∆rj = O(ϵ∆A) is small whenever we make an update of the form A = A+∆A with

Gjj = O(ϵ) small. Under the simple linear model f(z) = z, we haveG = I and recover

the parameterization in Eq. (5.8), so Eq. (5.14) is a generalization of Eq. (5.8) (just

like Eq. (5.13) is).

Note that each input (i.e., each i) will potentially have a different gain matrix,

Gi = diag(f ′(zi)), so each sample will have a potentially different value of Ai =

[Gi−GiWGi]−1 as well. The gradient-based update of the loss, L(ri,yi), with respect

125



to Ai for each sample becomes

∆Ai = −ηA∇AiL(ri,yi)

= −ηAGi (∇riL) (r
i)T [Gi]−1A−T

(5.16)

Using the same approach used to derive Eq. (5.10) above, we can again derive an

update to W given by

∆W i
2 = F−1(F (W ) + ∆Ai)−W

= −
[︂[︁
I −GiW

]︁−1
Gi − ηA

[︁
Gi
]︁2
(∇riL) (r

i)T
[︁
I −GiW

]︁T
Gi
]︂−1

+
[︁
[Gi]−1 −W

]︁ (5.17)

This update can only be evaluated directly in the situation where Gi
jj ̸= 0 for all

j so that the inverse of the gain matrix, G, exists. However, note that [W i
2]jk → 0

as Gi
jj → 0, as expected, so in situations where Gi

jj = 0, it is consistent to take

[W i
2]jk = 0. Note also that Eq. (5.17) is equivalent to Eq. (5.10) whenever G = I, as

expected.

5.3.2 Linear Approximation of the Reparameterized Rule

The reparameterized rule in Eq. (5.17) is rather a complicated learning rule, and

the matrix inverses can be computationally inefficient. If we assume that ηA > 0

is small, then we can approximate Eq. (5.17) by applying Taylor expansion to a

linear order in ηA. This gives the linearized parameterized rule (see Appendix A.3

for details),

∆W i
3 = −ηA

[︁
I −WGi

]︁
Gi (∇riL) (r

i)T
[︁
I −GiW

]︁T
[I −GiW ] (5.18)

126



The radius of convergence of the associated Taylor polynomial is given by

⃦⃦⃦
ηC

[︂[︁
Ai
]︁−1
]︂ [︁

Gi
]︁2 (︁

∆Ai
)︁ [︁

Gi
]︁2⃦⃦⃦

< 1. (5.19)

Therefore, if

ηA ≪
1

∥ [Gi −GiWGi] [Gi]2 (∇riL) (ri)
T [Gi −GiW TGi] [Gi]2∥

,

the ∆W i
3 from Eq. (5.18) approximates ∆W i

2 from Eq. (5.17).

In contrast to Eqs. (5.6) and (5.17) for ∆W i
1 and ∆W i

2, Eq. (5.18) for ∆W i
3 does

not require the computation of matrix inverses. Like ∆W i
1 and ∆W i

2, ∆W i
3 satisfies

∆Wjk → 0 whenever Gjj → 0, but unlike Eq. (5.17) for ∆W i
2, Eq. (5.18) for ∆W i

3

can be evaluated directly when Gjj = 0 for some j.

Recall that ∆W i
2 can be interpreted as steepest descent with respect to a non-

Euclidean metric, but it cannot be interpreted as gradient descent because the corre-

sponding metric does not generate an inner product, which is necessary for defining

a non-Euclidean gradient.

In contrast, ∆W i
3 can be interpreted as gradient descent of the loss function with

respect to W on non-Euclidean geometry. To see why this is the case, first, note that

∆W i
3 is related to ∆W i

1 according to

∆W i
3 = Bi∆W i

1C
i, (5.20)

where

Bi = [I −WGi][I −WGi]T

and

Ci = [I −GiW ]T [I −GiW ].

127



Here, we took ηA = ηW = η to highlight the relationship between the two update

rules, but constant scalar coefficients do not affect these results.

Using Eq. (5.20), we may conclude that ∆W i
3 is equivalent to gradient descent of

the loss with respect to W on non-Euclidean geometry. To explain this statement

in more detail, note that the gradient of L(ri,yi) with respect to W depends on

the choice of metric or geometry [78]. Given an inner product, ⟨·, ·⟩a, on RN×N

the gradient of a function, F : RN×N → R, on the geometry imposed by ⟨·, ·⟩a

evaluated at W ∈ RN×N is the unique matrix ∇a
WF ∈ RN×N such that for every

U ∈ RN×N [77, 78],

⟨∇a
WF,U⟩a = lim

ϵ→0

F (W + ϵU)− F (W )

ϵ
.

The standard Euclidean gradient, ∇ = ∇E, is given by taking the geometry produced

by the Euclidean inner product,

⟨U, V ⟩E =
∑︂
jk

UjkVjk = Tr(UV T ).

Recall that ∆W i
1 is defined by the Euclidean gradient,

∆W i
1 = −η∇E

WL(ri,yi)

where L(ri,yi) is interpreted as a function of W . We claim that

∆W i
3 = −η∇B

WL(ri,yi) (5.21)

where ∇B
W is the gradient under the geometry defined by the inner product,

⟨U, V ⟩B = Tr(B−1UC−1V T ) = ⟨B−1U, V C−1⟩E.

128



Here and below, for notational convenience, we do not write the explicit dependence

of B or C on i but note that B and C do depend on i through Gi. In other words,

there are distinct matrices, B and C, and therefore distinct inner products, ⟨·, ·⟩B at

each gradient descent iteration. Given Eq. (5.20), we can prove Eq. (5.21) by showing

that

∇B
WL = B

[︁
∇E

WL
]︁
C. (5.22)

To show Eq. (5.22), first define the N ×N standard basis matrices Ejk entry-wise by

Ejk
j′k′ =

⎧⎪⎪⎨⎪⎪⎩
1 j = j′ and k = k′

0 otherwise

.

for j, k = 1, . . . , N . Now compute the inner product of the gradient with Ejk,

⟨︁[︁
∇BL

]︁
, Ejk

⟩︁
B
=
⟨︁
B−1

[︁
∇BL

]︁
, EjkC−1

⟩︁
E

= Tr
(︂
B−1

[︁
∇BL

]︁
C−1

[︁
Ejk
]︁T)︂

=
N∑︂

n=1

[︁
B−1

[︁
∇BL

]︁
C−1Ekj

]︁
n,n

=
N∑︂

n,m=1

[︁
B−1

[︁
∇BL

]︁
C−1

]︁
n,m

[Ek,j]m,n

=
[︁
B−1

[︁
∇BL

]︁
C−1

]︁
jk

(5.23)

where the last line follows from the fact that Ekj
n,m = 1 when n = k and m = j, and it

is equal to zero for all other j, k. But we also have, from the definition of a gradient,

⟨︁[︁
∇BL

]︁
, Ejk

⟩︁
B
= lim

ϵ→0

J(W + ϵEjk)− J(W )

ϵ
=

∂J

∂Wjk

=
[︁
∇EL

]︁
jk
. (5.24)

129



Since Eqs. (5.23) and (5.24) apply for all indices j, k, we may conclude that

B−1
[︁
∇BL

]︁
C−1 =

[︁
∇EL

]︁
and therefore, [︁

∇BL
]︁
= B

[︁
∇EL

]︁
C

which concludes our proof.

In summary, if W is updated according to ∆W i
3 from Eq. (5.18), then this is

equivalent to performing gradient descent on the loss with respect to the weight

matrix under the geometry defined by the new inner product, ⟨U, V ⟩Bi . Below, we

present examples showing that this geometry is better suited to learning W than

gradient descent with respect to the standard Euclidean geometry. Specifically, ∆W i
3

learns more robustly than ∆W i
1.

5.3.3 Regularization for Fixed Point Problems

The learning rules derived above were derived explicitly to minimize the cost func-

tion without regard for whether the learned fixed points are stable. Regularization

can be used to encourage stable fixed points, and to improve generalization.

Specifically, we can modify any of the learned rules above by subtracting a scalar

multiple of the weight matrix,

∆W ← ∆W − λW, (5.25)

where λ > 0 is a hyperparameter. The subtraction of λW on each iteration is a form

of weight decay [34], which pushes the eigenvalues of W toward zero. This tends to

encourage negative eigenvalues of the Jacobian matrix, J = [−I + GW ]/τ since it

encourages the −I term to dominate. Therefore, regularization through Eq. (5.25)

130



tends to promote stability when learning fixed points in RNNs.

Notably, ∆W i
2 above was derived to be equivalent to gradient-based learning on a

linear model r = GAGx (or r = Ax when G = I). When solving this linear problem

directly with parameters, A, one would normally apply weight decay to A itself by

modifying the gradient-based learning rule according to

∆A← ∆A− λA. (5.26)

Following the approach in Section 5.3.1, we could derive a ∆W that produces the same

learning dynamics as this regularized version of learning parameters, A. However, this

would promote unstable fixed points. To see why this is the case, consider the special

case G = I, so the A = [I −W ]−1 and J = [−I +W ]/τ . Weight decay on A from

Eq. (5.26) pushes the eigenvalues of A toward zero. Since J = −A−1/τ , this would

increase the spectral radius of J , promoting eigenvalues with a positive real part and

hence unstable fixed points. Hence, we should apply weight decay directly to W ,

not to A, if we want to learn stable fixed points. As a result, even though ∆W i
2 is

equivalent to gradient-based learning of A in the absence of regularization, they are

not equivalent when regularization is used.

5.4 Experiments and Results

We next evaluate and interpret each of the learning rules derived above on several

supervised learning tasks on increasing complexity.

131



5.4.1 Example 1: Linear Least Squares Problem in One-dimension.

For illustrative purposes, we first consider a simple linear example in one dimen-

sion. In particular, we take N = 1,

f(z) = z,

and

L(r, y) = ∥r − y∥22 = (r − y)2. (5.27)

We write r and y in regular font instead of boldface because they are scalars. Note

that G = 1 and W = w are also scalars for this model. The fixed point solution in

Eq. (5.3) is given by

r =
x

1− w
, (5.28)

and it is stable if w < 1.

To test the gradient-based learning of fixed points in this example, we generated

m = 500 normally distributed inputs, xi, with a noisy, linear relationship to the

labels, yi (Figure 5.2A). Specifically,

xi ∼ σxN(0, 1)

yi ∼
1

1− ŵ
xi + σyN(0, 1)

(5.29)

where the N(0, 1) are i.i.d., standard normally distributed random numbers and ŵ is

the ground truth weight parameter. We used ŵ = −1, σx = 0.1, and σy = 0.01.

132



−0.2 0.0 0.2
input (x)

−0.1

0.0

0.1

la
be

l (
y)

A data

model

−3 −2 −1 0
W

0.000

0.005

0.010

co
st

,J

B

minimum

left start

right start

0 250 500 750 1000
iteration number

0.0004

0.0005

0.0006

co
st

,J

C

ηw = 0.02

ηw = 0.2

ηw = 2.0

ηw = 20.0

minimum

0 250 500 750 1000
iteration number

0.000

0.001

0.002
co

st
,J

D

Figure 5.2. Gradient-based learning of a fixed point firing rate in a
one-dimensional linear regression task. A) A simple linear regression
task to find the best-fit line (orange) from a set of 500 randomly generated
data points (blue). Model output, r (orange line), is defined by solutions to

the fixed point equation r = wr + x where x is the input and w is the
model parameter. B) The cost as a function of w. The cost is convex and
has a minimum value at w∗ (red star), but the slope of the landscape is

very different on each side of the minimum (i.e. wleft = −2, a blue dot on
the left side vs. wright = 0, black dot on the right side). C,D) Gradient

descent on w starting from initial values wleft and wright, respectively with
various learning rates.

133



5.4.1.1 Learning Through the Gradient Descent Approach

The cost function can be written in matrix form as

J(w) =
1

m

m∑︂
i=1

L(ri, yi)

=
1

m
(R− Y )(R− Y )T

where X = [x1 x2 . . . xm] is the 1×m array of all inputs (the “design matrix” [61]),

Y is the 1 × m array of labels, and R = X/(1 − w) is the array of outputs. The

gradient-based update from Eq. (5.7) can then be written as

∆w1 =
1

m

m∑︂
i=1

∆wi
1

=
1

m

m∑︂
i=1

−2ηw
1− w

(ri − yi)ri

=
−2ηw

m(1− w)
(R− Y )RT

=
−2ηw

m(1− w)

(︃
X

1− w
− Y

)︃
RT

(5.30)

where we used R = X/(1 − w) to obtain the last line. This update defines direct

gradient descent on the cost function, J(w), with respect to w.

The cost landscape, J(w), is convex on the region w ∈ (−∞, 1], over which fixed

points are stable (Figure 5.2B; see Appendix A.4 for proof) and the cost function is

therefore minimized by solving ∆w1 = 0 for w to get the minimizer (Figure 5.2B, red

star)

w∗ = 1− XXT

Y XT
. (5.31)

The loss landscape has a vertical asymptote at w = 1 (which also specifies the

boundary of the stability region) and the slope of the loss landscape is very different on

each side of its minimum (Figure 5.2B, blue curve). To demonstrate how this uneven

landscape affects gradient-based learning, we performed gradient descent using ∆w1

134



from Eq. (5.30) with initial conditions on each side of the minimizer: wleft,0 = −2

(Figure 5.2C, corresponding to the blue starting point in Figure 5.2B) and wright,0 = 0

(Figure 5.2D, corresponding to the black starting point in Figure 5.2B). Due to the

differences in steepness on either side of the minimizer, the loss curve decreases at very

different speeds when using different initial conditions with the same learning rate.

This suggests that, under gradient-based learning of fixed points, a good choice of

learning rate can depend sensitively on the choice of initial weights. While this is not

necessarily problematic for this simple one-dimensional example, the demonstration

of this phenomenon in one dimension will help us understand problems with gradient-

based learning of fixed points in higher dimensions that we encounter below.

5.4.1.2 Learning Under the Reparameterized Update.

In one dimension with G = 1, the reparameterization in Eqs. (5.8) and (5.14) can

be written as (Figure 5.3A)

a = F (w) :=
1

1− w
.

Under this new parameterization, the fixed point equation in Eq. (5.28) becomes a

linear model,

r = ax. (5.32)

The cost, J , is a quadratic function of the new parameter, a, (Figure 5.3B)

J(a) =
1

m
(aX − Y )(aX − Y )T .

Correspondingly, we have a standard linear model for which the gradient-based up-

date to a is obtained from Eq. (5.9) with X = R/a, and this update is indeed the

135



−1 0 1 2
a

0.00

0.01

0.02

co
st

,J

B
minimum

left start

right start

0 250 500 750 1000
iteration number

0.0004

0.0005

0.0006

co
st

,J

C

ηa = 0.02

ηa = 0.2

ηa = 2.0

minimum

0 250 500 750 1000
iteration number

0.000

0.001

0.002

0.003
co

st
,J

D

−3 −2 −1 0
w

0.5

1.0

1.5

a
=

F
(w

)

A
left start

right start

minimizer

Figure 5.3. Learning a fixed point firing rates in a one-dimensional
linear regression task under a learning rule derived from a
re-parameterized model. A) The new parameter a = F (w) as a

function of w. B) The cost as a function of a is quadratic. The red star
shows the minimum and the blue and black circles show the same initial

states, as in Figure 5.2A, mapped to the new parameter space. C,D) Same
as Figure 5.2C,D except using the learning rule from Eq. (5.35). This is
equivalent to using gradient descent on a (i.e., Eq. (5.33)) on the cost

landscape in panel A.

136



delta rule [34, 91],

∆a =
2

m
(aX − Y )XT . (5.33)

The cost function is a convex quadratic (Figure 5.3B) and gradient descent with a

sufficiently small learning rate is guaranteed to converge to the unique minimzer [13,

49], also see Appendix A.6

a∗ = F (w∗) =
Y XT

XXT
. (5.34)

The corresponding update to w, from Eqs. (5.10) and (5.17), is

∆w2 =
1

m

m∑︂
i=1

∆wi
2

=
1

m

m∑︂
i=1

(︄
−1

1
1−w
− 2ηA(ri − yi)ri(1− w)

+ 1− w

)︄

=
1

m

m∑︂
i=1

(1− w)

(︃
1− 1

1− 2ηa (xixi − xiyi + wxiyi)

)︃ (5.35)

We applied the learning rule in Eq. (5.33) to the same learning task above using

initial conditions aleft,0 = F (wleft,0) = 1/3 and aright,0 = F (wright,0) = 1 correspond-

ing to the initial conditions for w used above (Figure 5.3C,D). Since the cost landscape

is quadratic, the learning rule in Eq. (5.35) learns at a similar rate for both initial

conditions. This suggests that reparameterizing the equation for the fixed point into

a linear model can improve learning robustness. We later test this conclusion in a

more complex setting by transitioning to a higher-dimensional example.

137



5.4.1.3 Learning Via Linearizing the Reparameterized Rule

In one dimension, the update ∆W3 from Eq. (5.18) is given by linearizing the rule

from Eq. (5.35) around ηA = 0 to get

∆w3 =
ηa
ηw

(1− w)2∆w1(1− w)2

=
−2ηa(1− w)3

m
(R− Y )RT

=
−2ηa(1− w)3

m
(a2XXT − aY XT )

=
−2ηa(1− w)3

m

m∑︂
i=1

(a2xixi − ayixi)

(5.36)

One interpretation of this update rule is that it represents the gradient-based update,

∆w1, multiplied by a factor, (1 − w)4, which depends on w. Note that (1 − w)4 is

an increasing function of the distance of w from the singularity at w = 1. When w

is further from w = 1, the update ∆w3 is increased more relative to ∆w1. Looking

back at Figure 5.2B, this corresponds to taking larger steps whenever the slope of

J(w) is small, thereby at least partially correcting the problem of differing slopes on

either side of the minimum.

Using ∆w3 from Eq. (5.36) to update w for this one-dimensional linear problem

gives similar results to using ∆w2 from Eq. (5.35) (Figure 5.4A, B), as expected.

Hence, this linearized re-parameterized update rule also overcomes the problems with

∆w1 from Eq. (5.30) for direct gradient descent on J(w) with respect to the Euclidean

gradient on w.

5.4.2 Example 2: Linear Least Squares Problem in Higher-dimensions.

We next generalize the results from the previous section to higher dimensions

(N > 1). We first consider the case in which there are more neurons than data

samples (N > m), which we refer to as the “over-parameterized” case.

138



Figure 5.4. Learning a fixed point firing rates in a one-dimensional
linear regression task under a learning rule derived from the

linearized re-parameterized model. A, B) Same as Figure 5.3C, D
except using the learning rule from Eq. (5.36).

We used the same cost function in Eq. (5.27), where now the rate and response

vector becomes a matrix instead, R, Y ∈ RN×m. For i = 1, . . . ,m, yi ∈ RN is the ith

target. We again use f(z) = z so that G = I and fixed point firing rates are given

by r = [I −W ]−1x.

For the simulation, we first generate inputs, X = [x1 x2 . . .xm] ∈ RN×m, from

a Gaussian distribution. Similarly, we generate targets Y = [y1 y2 . . .ym] ∈ RN×m

by multiplying inputs by the ground truth matrix, Ŵ , and adding noise. Specifically,

we define

X ∼ σxNN×m(0, 1)

Y ∼
[︂
I − Ŵ

]︂−1

X + σyNN×m(0, 1)
(5.37)

where σx = 0.1 controls the strength of the stimuli, σy = 0.01, and NN×m(0, 1)

represents an N × m matrix of independent, standard Gaussian random variables.

The ground truth weight matrix is generated by

Ŵ ∼ σw√
N
NN×N(0, 1). (5.38)

Following Girko’s circular law, the eigenvalues of Ŵ lie approximately within a circle

139



of radius σw with high probability [33]. Hence, we take σw = 0.5 < 1 to control the

spectral radius of the circle to be less than 1, so that all eigenvalues of the Jacobian

matrix, J = −I +W , are negative and fixed point firing rates are stable.

We first study the explicit minimizers of this “over-parameterized” (N > m) linear

example. Note that, because the system is over-parameterized, the minimum cost is

J = 0, which can be realized by infinitely many values of W . However, we must find

a minimizer that produces stable fixed points. Stable fixed points are encouraged by

W with a small spectral radius (because the Jacobian matrix is J = −I +W ). We

therefore find W ∗ by minimizing ∥W∥ subject to [I −W ]−1X = Y , since small norm

in W is to promote stable solution. This is equivalent to finding

min∥W∥ subject to [I −W ]Y = X

After rearranging terms, this can be written as

min∥W∥ subject to WY = Y −X

Now the expression became a familiar “least squares” problem with respect to W ,

and we can solve directly for

W ∗ = [Y −X]Y + (5.39)

where Y + is the Moore-Penrose pseudoinverse of Y (See Appendix A.6 for more

details).

Similar to the 1D case in Section 5.4.1.1, the cost function in terms of W is

J(W ) =
1

m

m∑︂
i=1

(︃
[I −W ]−1 xi − yi

)︃T(︃
[I −W ]−1 xi − yi

)︃
. (5.40)

140



This cost landscape, J(W ), cannot easily be visualized as a function of W for

N > 1 because W has N2 dimensions, so even N = 2 would be difficult to visualize.

To help visualize J(W ), we first plotted it on a random line segment passing through

W ∗ in RN×N . Specifically, we defined the parameterized function

W (t) = W ∗ +
tpσw√
N

Z (5.41)

where Z ∈ RN×N has independent random entries drawn from a standard normal

distribution, σw = 0.5 is the same parameter used to generate Ŵ described above,

p = 5 scales the magnitude of the perturbation, and t was varied from −1 to 1 to

create the visualization of J(W (t)) (Figure 5.5A). This corresponds to plotting J(W )

along a one-dimensional slice of the space RN×N on which W lives. Note that the

true minimizer, W = W ∗, is sampled when t = 0. Note also that, by Girko’s circular

law, W is very likely to produce unstable fixed points whenever |t| >
√

1−σ2
w

σwp
≈ 0.346

(see Appendix A.5). Figure 5.5A shows the resulting cost curve for five random

values of Z with the blue dashed lines marking the stability boundary |t| =
√

1−σ2
w

σwp
.

The cost is relatively well-behaved within the stability region but poorly conditioned

outside of this region because of the singularities produced by the matrix inverses in

Eq. (5.40). Specifically, when |t| > 0.346, the spectral radius of W is larger than 1 so

some eigenvalues are near 1 in magnitude. As a result, the [I −W ]−1 in Eq. (5.40)

can lead to very large values of J(W ) when |t| > 0.346.

To further visualize the loss landscape, we repeated the procedure above in two

dimensions by sampling values of W from a random plane passing through W ∗.

Specifically, we defined the parameterized function

W (t1, t2) = W ∗ +
pσw√
N
(t1Z1 + t2Z2) (5.42)

where Z1, Z2 ∈ RN×N have independent random entries drawn from a standard

141



Figure 5.5. Visualizing the cost landscape in a higher dimensional
linear regression task. A) The cost function J(W (t)) as a function of t
from Eq. (5.41). This represents the cost evaluated along five random line
segments in RN×N , each passing through W ∗ at t = 0. Two blue dash lines

show the stability boundary, |t| = 0.346. The vertical axis is cut off at
J = 1000 to better visualize the curves. Blue and black circles show stable
and unstable initial conditions used later for learning. B) The cost function

J(W (t1, t2)) from Eq. (5.42). This represents the cost evaluated on a
randomly oriented square with a center at W ∗. The color axis is cut off at

J = 1000.

142



normal distribution, σw = 0.5 is the same parameter used to generate Ŵ described

above, p = 5 scales the magnitude of the perturbation, and t1 and t2 were each

varied from −1 to 1 to create the visualization of J(W (t)) (Figure 5.5B). Note that

W (t1, t2) = W ∗ when t1 = t2 = 0, so the center of the square corresponds to the

minimum cost, J = 0. Note also that the stability condition becomes t21 + t22 <

1−σ2
w

σ2
wp2

= 0.12 (see Appendix A.5), so the stability boundary is a circle (Figure 5.5B,

dashed blue curve). Singularities create intricate ridges of large cost outside of the

stability boundary (Figure 5.5B).

In summary, Figure 5.5 shows that the cost landscape is extremely poorly condi-

tioned outside of the stability region, i.e., when W have a spectral radius larger than

1.

5.4.2.1 Learning Through the Gradient Descent Approach

We first perform gradient descent on J with respect to W . The gradient-based

update rule from Eq. (5.7) can be written as

∆W1 =
1

m

m∑︂
i=1

∆W i
1

=
−2ηW
m

[︁
I −W T

]︁−1
[R− Y ]RT .

(5.43)

Following the discussion above, we hypothesized that gradient descent using initial

values of W from the stable region (spectral radius < 1) would perform better com-

pared to the initial values from the unstable region (spectral radius > 1).

Indeed, when the initial W was chosen from within the stability region, gradient

descent approached the minimum cost, J = 0, after sufficiently long learning for

sufficiently small learning rates (Figure 5.6A). In contrast, when the initial W was

chosen from outside the stability region, W appears to get stuck in local minima and

the cost remains high across a wide range of learning rates (Figure 5.6B).

143



Even for initial conditions within the stability region (Figure 5.6A), the effective-

ness of gradient-based learning was somewhat sensitive to the choice of the learning

rate, consistent with the observations we made for one-dimensional linear regression.

We next show that the re-parameterized learning rule, ∆W i
2, from Eqs. (5.10) and

(5.17) improves learning robustness.

Under the stable fixed point condition compare to 1D case in Figure 5.2, t < 1

implies a negative Jacobian, which corresponds to a positive second derivative of

Eq. (5.27), J ′′(t) > 0 for all w. Since we use σy to control the spread of the noise,

convexity is guaranteed whenever the initial firing rates in Eq. (5.28) are not too

far away from their target rates in Eq. (5.29) such that yi <
3
2
ri in Figure 5.2B, so

keeping the linear relationship satisfied. (see Appendix A.4). Hence performing the

gradient descent method with a suitable learning rate, we can reach to the optimal

cost.

However, in the higher dimensional case, it’s hard to determine if the loss function

associated with an initial random connectivity matrix W is still convex (Figure 5.5).

This brings us to consider a convex cost function from reparameterization below.

5.4.2.2 Learning Under the Reparameterized Update.

For this linear case, the reparameterized learning rule from Eqs. (5.10) and (5.17)

can be written as

∆W2 =
1

m

m∑︂
i=1

∆W i
2

= [I −W ]−
(︃
[I −W ]−1 − 2ηA

m
(R− Y )XT

)︃−1

.

(5.44)

144



Figure 5.6. Performance of three different learning rules for a
linear regression problem in many dimensions. Three different

learning rules: ∆W i
1 (top row; A, B), ∆W i

2 (middle row; C, D), and ∆W i
3

(bottom row; E, F) applied to a linear regression problem in N = 200
dimensions with m = 100 data points, so the system is over-parameterized

(N > m). In the left column (A, C, E) the initial W was drawn from
within the stability region (spectral radius < 1; blue dot in Figure 5.5A). In
the right column (B, D, F) the initial W was drawn from outside of the

stability region (spectral radius > 1; black dot in Figure 5.5A).

145



Recall that the learning dynamics produced by Eq. (5.44) are equivalent to those

produced by learning the standard cost function for a linear model,

J(A) =
1

m

m∑︂
i=1

(︁
Axi − yi

)︁T (︁
Axi − yi

)︁
. (5.45)

along with the standard gradient-based update rule,

∆A = −2ηA
m

(AX − Y )XT . (5.46)

In comparison to the gradient-based update, ∆W1, on J(W ) from Eq. (5.43)

(Figure 5.6A,B), we see that ∆W2 from Eq. (5.44) performs much more robustly

(Figure 5.6C,D). The cost converges toward the minimum at J = 0 across a range

of learning rates whether the initial W is inside or outside the stability region. This

is because the standard optimization problem defined by Eqs. (5.45) and (5.46) has

robust convergence properties.

5.4.2.3 Learning Via Linearizing Reparameterized rule

We now consider the linearized reparameterized learning rule. The radius of

convergence from Eq. (5.19) for this model can be written as

ηA <
1⃦⃦⃦

2
m

(︂
XXT − [I −W ]Y XT

)︂⃦⃦⃦ , (5.47)

The linearized, reparameterized update rule from Eq. (5.18) for this linear model can

be written as

∆W3 =
1

m

m∑︂
i=1

∆W i
3

= −2ηA
m

[I −W ] (R− Y )XT [I −W ] .

(5.48)

146



With the trade-off of imposing the additional convergence criterion in Eq. (5.47), the

approximated learning rule gives a cleaner form. The performance of this approxima-

tion update in Figure 5.6E and F shows excellent agreement with the reparameterized

rule, ∆W2 (Figure 5.6C-F). In terms of the computations, Eq. (5.48) does not require

any explicit computation of matrix inverses with the exception of the computation

of firing rates R = [I −W ]−1X. However, since R is left-multiplied by [I −W ], we

can get rid of this matrix inverse to write ∆W3 in the form

∆W3 = −
2ηA
m

(︃
XXT [I −W ]− [I −W ]Y XT [I −W ]

)︃
. (5.49)

Empirical tests show that using Eq. (5.49) for ∆W3 is much faster than Eq. (5.43)

for ∆W1 or (5.44) for ∆W2

Table 5.1 shows the runtime computations from stable (unstable) initial conditions

within over and under-parameterized systems in seconds. Runtimes are for 3500

iterations of each learning rule across three different η values (η = 0.01, 0.1, 1) in a

model with m samples and N = 200 neurons. To check the similarity between the

updates from each learning rule, we calculated the angle between them, defined by

θα,β = cos−1

(︄
dWα · dWβ√︁

(dWα · dWα)(dWβ · dWβ)

)︄

= cos−1

⎛⎝ Tr(dWαdW
T
β )√︂

Tr(dWαdW T
α )Tr(dWβdW T

β )

⎞⎠ .

(5.50)

Here, α and β = 1, 2, 3 refer to the learning rules in Eqs. (5.43), Eqs. (5.44), and

Eqs. (5.46). We use the β rule to update W throughout the comparison. Figure 5.7A,

C, and E (left column) show the angle between the update rules through the learning

process. We also computed the Pearson correlation coefficient between the updates,

147



TABLE 5.1

RUNTIME LEARNING RULE COMPARISON IN HIGHER

DIMENSIONAL LINEAR LEAST SQUARES PROBLEM

System Gradient-based Reparameterized Approximation

Eq. (5.43) Eq. (5.44) Eq. (5.49)

Over parameterized 10.48(20.29) 21.49(29.30) 6.46(6.09)

(N > m = 100)

Under-parameterized 25.18(25.45) 25.46 (42.31) 10.66 (22.13)

(N < m = 500)

defined by

ρα,β =
cov(dWα, dWβ)√︁
var(dWα)var(dWβ)

. (5.51)

where cov and var are the covariance and variance taken across entries of the matrices.

Figure 5.7B, D, and F (right column) show the correlation between the update rules

through the learning process.

The re-parameterized and linear approximation updates (2 and 3) are very similar

since the angle between them in Figure 5.7E is close to 0 and the correlation coefficient

in Figure 5.7F is near 1. In contrast, the gradient-based update is less similar to the

other two updates (Figure 5.7A-D).

5.4.2.4 An Under-parameterized Linear System.

For the sake of completeness, we also considered an under-parameterized system

by increasing the number of training data points, m, to 500 while keeping the num-

ber of neurons at N = 200, so that m > N . We can continue using Eq. (5.39) and

148



Figure 5.7. Angles and correlations between weight updates for
different learning rules. A) Angle (θ12) between the weight updates for
the gradient-based and re-parameterized learning rules. B) Correlation

coefficient (ρ12) between the weight updates for the gradient-based (∆W1)
and re-parameterized (∆W2) learning rules. C-F) Same as A and B, but

for all other pairs of learning rules.

149



Figure 5.8. Performance of three different learning rules for a
linear regression problem in many dimensions using an
under-parameterized model. Same as Figure 5.6, but for an

under-parameterized model with m = 500 > N = 200. The dashed red line
indicates the true minimum cost, J(W ∗).

150



Eq. (5.34) as a solution ofW ∗ and A∗ (see Appendix A.6). Except for the sample size,

m, we keep everything else the same as in the overparameterized model. Similarly,

we also pick one initial W from the stable region and compare the three synaptic

updating performances in Figure 5.8, our experiments show that this system takes

fewer iterations to approach the optimal loss, but it is computationally slower in com-

parison to the over-parameterized model, presumably because m is larger (Table 5.1).

For unstable initial conditions, the linearized rule blows up at larger learning rates

(Figure 5.6F), but the results are otherwise similar to the over-paramterized case

(compare Figures 5.6 and 5.8).

5.4.3 Example 3: Training Fixed Points on A Categorical Task.

We next consider a categorization task using the MNIST hand-written digit bench-

mark. We want to minimize a cross-entropy loss on C = 10 classes using the cross-

entropy loss function with one-hot encoded labels (see Figure 5.9A). Specifically,

L(yi, si) = −yi · log(si) (5.52)

where yi is a “one-hot” encoded label for digit i. Specifically, yi is a C-dimensional

binary vector with 1 for the entry corresponding to the correct label and zeros in all

other entries. Also,

sil =
ez

i
l

C∑︁
k=1

ez
i
k

, (5.53)

is the softmax output, and zi ∈ RC is a logit computed from a random projection of

fixed point rates of a recurrent network. Specifically,

zi = Woutr
i

151



A

1.0 0.5 0.0 0.5 1.0
real( )

1.0

0.5

0.0

0.5

1.0

im
ag

(
)

B

5.0 2.5 0.0 2.5 5.0
I

1.0

0.5

0.0

0.5

1.0

f(I
)

C

0 250 500 750 1000
time

0

1

2

3

4
ra

te
s,

 r(
t)

D

Figure 5.9. Training fixed point from RNNs for a categorical task
A: Diagram of a RNN with MNIST-hand written digit inputs. B):

Eigenvalues of the connectivity matrix, W in the network, same as in
Figure5.1B. C: Sigmoidal function used as an “f-I” curve, f = tanh(I),
where G ̸= Id in Eq.2.22. D: Same as in Figure5.1D, except the input is

static image data.

152



where Wout ∈ RC×N is a fixed, random readout matrix and ri = f(Wri + xi) is

the fixed point from an N ×N recurrent network with input i. Inputs are flattened

28 × 28 MNIST images, pi ∈ RM , where M = 28 ∗ 28 = 784 and we multiply them

by a fixed, random read-in matrix to form the input to the network,

xi = Winp
i

where Win ∈ RN×M and N = 200 is the number of neurons in our network. We did

not learn Wout or Win because we wanted to focus on the effectiveness of learning the

recurrent weight matrix, W . In all examples, below we train the network on m = 100

MNIST data points. To clarify, Wout and Win are not learned, but they are held fixed

so that we can evaluate learning of W alone.

Figure 5.9 presents the network scheme and the fixed point dynamics under the

stability. In the following sections, we focus on training the fixed point with dif-

ferent activation functions including non-linear scenarios and compare the learning

performance across with three different learning rules.

5.4.3.1 Learning with Linear Activation Function

We first consider the special case where f(z) = z is the identity so that G = I.

The matrix of firing rates R = [r1 r2 . . . rm] ∈ RN×m is given by R = [I −W ]−1X

where X = [x1 x2 . . . xm] ∈ RN×m.

Gradient-based learning of W from Eq. (5.6) becomes

∆W1 =
1

m

m∑︂
i=1

∆W i
1

= −ηW
m

[︁
I −W T

]︁−1
W T

out [S − Y ]RT .

(5.54)

where Y = [y1 y2 . . . ym] ∈ RC×m and S = [s1 s2 . . . sm] ∈ RC×m Similarly, the

153



re-parameterized learning from Eq. (5.17) has the following expression,

∆W2 =
1

m

m∑︂
i=1

∆W i
2

= −
(︂
[I −W ]−1 − ηA

m
W T

out [S − Y ]XT
)︂−1

+ [I −W ] .

(5.55)

Moreover, under the first order, Taylor expansion around small learning rate, ηA in

Eq. (5.18) gives the synaptic update rule as,

∆W3 =
1

m

m∑︂
i=1

∆W i
3

= −ηA
m

[I −W ]W T
out [S − Y ]XT [I −W ] .

(5.56)

The gradient-based learning rule, ∆W i
1, performs poorly across a wide range of

learning rates. Small learning rates learn slowly while larger learning rates are unsta-

ble (Figure 5.10A, B). In contrast, the re-parameterized learning rule, ∆W2, performs

well across a range of learning rates (Figure 5.10C, D) and its linearized counterpart,

∆W i
3, performs similarly (Figure 5.10E, F). Runtimes and testing errors for ∆W i

3 are

greatly improved compared to ∆W i
2 and ∆W i

1 respectively (Table 5.2).

For the sake of completeness, we also considered an under-parameterized system

by increasing m to 500 while keeping N = 200, so that m > N (see Figure 5.11

and Table 5.2). We saw similar performance to the overparameterized case except in

general the over-parameterized system has a higher testing error, presumably due to

over-fitting.

Table 5.2 shows the computations of run time and errors for three different learn-

ing rules in an over (under) parameterized linear network with m = 100(500) in

training and testing samples on a categorical MNIST task across 500 iterations.

154



Figure 5.10. Supervised linear learning of the fixed point firing
rates on an over-parameterized categorical task. A) Three different

learning rules: ∆W i
1 in Eq. (5.55) (top row; A, B), ∆W i

2 in Eq. (5.54)
(middle row; C, D), and ∆W i

3 in Eq. (5.56) (bottom row; E, F) applied to a
categorical MNIST benchmark problem in a linear network of N = 200

dimensions with m = 100 data points, so the system is over-parameterized
(N > m). The cost J(W ) is computed from the entropy loss in Eq. (5.52)
across 500 iterations. The left column (A, C, E) is the training loss. Right

Column (B, D, F)is the training error.

155



Figure 5.11. Supervised linear learning of the fixed point firing
rates on the under-parameterized categorical task. Same as in

Figure 5.10, except this is an under-parameterized system.

156



TABLE 5.2

LEARNING RULE RUNTIME AND ERROR COMPARISON OF A

CATEGORICAL TASK VIA LINEAR LEARNING

Linear Gradient-based Reparameterized Approximation

Learning Rule Eq. (5.54) Eq. (5.55) Eq. (5.56)

Time (in sec.) 4.32(4.97) 22.79(24.59) 0.61(1.24)

Training Error (in %) 8.0(22.6) 0.0 0.0

Testing Error (in %) 40.0(36.6) 31.0(23.4) 31(23.4)

5.4.3.2 Learning with ReLu Activation using Support Sets

So far, we have only considered linear models. For our first test of a nonlin-

ear model, we use a rectified linear activation, so that our networks become recur-

rent threshold-linear (a.k.s ReLu or Rectified Linear)recurrent networks [10, 23, 24].

Specifically, we used

f(z) = [z]+ =

⎧⎪⎪⎨⎪⎪⎩
z z > 0

0 z ≤ 0

. (5.57)

Solving the fixed point equation in Eq. (5.3), then firing rates satisfy ri = [Wri+xi]+.

For i = 1, . . . ,m, we define a support set [23, 24] S ⊂ {1, . . . , N} corresponding

to entries at which ri is positive, whereas Sc ⊂ {1, . . . , N} is the complement set

indicating indices at which ri is zero. Then fixed points satisfy

riS = WS,Sr
i
S + xi

S,

and

riSc = 0.

157



Note that the support set is potentially different for each sample, i, so we should

technically write Si in place of S, but we just write S for notational convenience.

The gradient of L(yi, si) with respect to W is zero off-support. In other words,

[︁
∇WL(yi, si)

]︁
jk

=
∂L

∂Wjk

= 0

if j ∈ Sc or k ∈ Sc. Therefore, gradient descent with respect to W is the same as in

a linear model from Eq. (5.6) but restricted to the support set (see Appendix A.7).

Gradient-based updates can be written as

∆W i
1 =

⎧⎪⎪⎨⎪⎪⎩
−ηW

[︁
IS,S −W T

S,S

]︁−1
[Wout]

T
·,S (s

i − yi) (riS)
T

on S

0 on Sc.

(5.58)

For updating synaptic connectivities through reparameterization, we must define the

parameter over the support set, Ai = [IS,S −WS,S]
−1 and derive (see Appendix A.7),

∆Ai = −ηA [Wout]
T
·,S
(︁
si − yi

)︁ (︁
xi
S

)︁T
= −ηA [Wout]

T
·,S
(︁
si − yi

)︁ (︁
riS
)︁T [︁

IS,S −W T
S,S

]︁ (5.59)

Then Eq. (5.17) becomes

∆W i
2 =

⎧⎪⎪⎨⎪⎪⎩
IS,S −WS,S −

(︂
[IS,S −WS,S]

−1 − ηA [Wout]
T
·,S (s

i − yi) (xi
S)

T
)︂−1

on S

0 on Sc.

(5.60)

Linearizing this equation from Eq. (5.18) under the radius of convergence region in

158



TABLE 5.3

LEARNING RULE RUNTIME AND ERROR COMPARISON OF A

CATEGORICAL TASK THROUGH RELU ACTIVATION WITH

SUPPORT SETS

Rectified Gradient-based Reparameterized Approximation

Learning Rule Eq. (5.58) Eq. (5.60) Eq. (5.61)

Time (in sec.) 1266.55(5707.81) 2030.23(6441.73) 1074.21(5263.38)

Training Error (in %) 24.0(30.4) 0(11.4) 0(8.2)

Testing Error (in %) 52.0(40.6) 23.0(25.0) 33(27.6)

Eq. (5.19),

∆W i
3 =

⎧⎪⎪⎨⎪⎪⎩
−ηA [IS,S −WS,S] [Wout]

T
·,S (s

i − yi) (xi
S)

T
[IS,S −WS,S] on S

0 on Sc.

(5.61)

Fig. 5.12 compares the performance of these three learning rules. Note that gradient-

based learning, ∆W i
1, from Eq. (5.58) learns slowly for small learning rates, but blows

up at larger learning rates, and is therefore not a robust learning algorithm for this

task (Fig. 5.12A). The reparameterized learning rule and its linearized counterpart

(∆W i
2 and ∆W i

3 from Eqs. (5.60) and (5.61) respectively) perform much more robustly

across a range of learning rates (Fig. 5.12C, D).

Note that the nonlinear computation time with the ReLu activation function in

Table 5.3 takes much longer compared with the linear computation in Table 5.2 since

we need to update each sample individually.

For completeness, we also computed the training loss and error for the rectified

159



Figure 5.12. Supervised learning of fixed point firing rates on a
categorical task using a rectified linear activation function on a
support set. Same as in Fig. 5.10, except using the rectified linear
activation from Eq. (5.57). Specifically, A,B) applied the learning rule
from Eq. (5.58). C,D) used the learning rule from Eq. (5.60). E,F)

performs the learning update from Eq. (5.61)

160



Figure 5.13. Same as in Fig. 5.12 except this is an
under-parameterized system. With m = 500.

linear model within the under-parameterized case (Figure 5.13). The results were

similar to the over-parameterized case.

5.4.3.3 Learning with a Sigmoidal Activation Function

Another type of nonlinear activation that is commonly used for RNNs in machine

learning is the sigmoidal activation function. In particular, we use hyperbolic tangent

f(z) = tanh(z) =
ez − e−z

ez + e−z
(5.62)

161



Where the range has a value from −1 to 1.Instead of solving the fixed point equation

in Eq. (5.3) analytically, for each sample, we use a numerical simulation approach

to obtain the fixed point ri. Consequently, we now have different Gi. Then the

gradient-based learning rule of W from Eq. (5.6) now becomes

∆W1 =
1

m

m∑︂
i=1

∆W i
1

= −ηW
m

m∑︂
i=1

[︂[︁
Gi
]︁−1 −W T

]︂−1

W T
out

[︁
si − yi

]︁ (︁
ri
)︁T

.

(5.63)

where Gi is also a diagonal matrix with diagonal entry gjjis calculated from the the

gradient of hyperbolic tangent gjj = 1−tanh2(z). Since tanh(z) has previously stored,

it is a faster and more efficient activation function in comparison to other sigmoid

activation like the logistic function f(z) = 1
1+e−z . Similarly, the re-parameterized

learning from Eq. (5.17) has the following expression,

∆W2 =
1

m

m∑︂
i=1

∆W i
2

= −
m∑︂
i=1

(︂[︁
[I −GiW

]︁−1
Gi − ηA

m
[Gi]2W T

out

[︁
si − yi

]︁
(ri)T

[︁
I −GiW T

]︁
Gi
)︂−1

+ [Gi]−1 −W.

(5.64)

Likewise, under the first order, Taylor expansion around small learning rate, ηA in

Eq. (5.18) gives the synaptic update rule as,

∆W3 =
1

m

m∑︂
i=1

∆W i
3

= −ηA
m

m∑︂
i=1

[︁
I −WGi

]︁
GiW T

out

[︁
si − yi

]︁
(ri)T

[︁
I −GiW T

]︁ [︁
I −GiW

]︁
.

(5.65)

Figures 5.14 and 5.15 and Table 5.4 demonstrate similar results for the sigmoidal

activation function as the rectified linear case. Notably, the gradient-based learn-

162



TABLE 5.4

LEARNING RULE RUNTIME AND ERROR COMPARISON OF A

CATEGORICAL TASK THROUGH TANH ACTIVATION

tanh Gradient-based Reparameterized Approximation

Learning Rule Eq. (5.64) Eq. (5.64) Eq. (5.65)

Time (in sec.) 4535.66(8762.34) 3483.21(8968.40) 1318.59(5442.67)

Training Error (in %) 0.0 0.0 0.0

Testing Error (in %) 37.0(29.2) 35.0(31.0) 33.0(30.0)

ing, ∆W i
1, performs worse than the reparameterized learning rule and its linearized

counterpart (∆W i
2 and ∆W i

3).

5.5 Discussions

In summary, we have shown that when learning fixed points of recurrent neural

network models, the direct application of gradient descent with respect to the recur-

rent weight matrix under Euclidean geometry is computationally expensive and not

robust. Badly conditioned loss surfaces and singularities in the loss surfaces can cause

ineffective learning. Matrix inverses in the equations for the gradients are expensive

to evaluate.

We proposed two alternative learning rules derived from a reparameterization

of the recurrent network model. These learning rules perform more robustly than

the standard gradient descent approach. Moreover, one of the two learning rules

is computationally much more efficient. The learning rules can be interpreted as

steepest descent and gradient descent on the recurrent weight matrix under a non-

Euclidean metric. Our results support recent calls to re-consider the default use of

163



Figure 5.14. Supervised learning of fixed point firing rates on a
categorical task using a sigmoidal activation function. Same as in
Fig. 5.10 and Fig. 5.12, except using the tanh activation from Eq. (5.62).

Specifically, A,B) applied the learning rule from Eq. (5.64). C,D) used the
learning rule from Eq. (5.64). E,F) performs the learning update from

Eq. (5.65).

164



Figure 5.15. Same as in Fig. 5.14 except this is an
under-parameterized system. With m = 500.

165



Euclidean gradients on parameters in machine learning [5, 6, 59] and computational

neuroscience [78]. These results also have implications for training recurrent neural

network models for computational neuroscience research and for machine learning

applications.

166



CHAPTER 6

SUMMARY AND FUTURE DIRECTIONS

We start the brain-modeling Odyssey with a discovery of neural dynamics. We

use the EIF spiking model to describe neural activities and their biological features

in-depth. Inspired by the neuron firing responses, a simplified mean-field approx-

imation of rate models and their connections to the artificial neural framework in

machine learning were developed, which allows us to analyze other computational

properties like the balance network, stimulus representations, and synaptic plastic-

ity. Along with the model evolution, they become more capable to solve real tasks

such as error detection and learning some objects under supervision. As a trade-off,

simplified models also become more abstract and drift away from biological details

and explanations. Studying the models of recurrent neuronal networks has brought

us a wealth of knowledge to understand neural dynamics and computations.

6.1 Summary

We summarize our learning objectives through each chapter and show their in-

terweaving connections here.

Recurrent Neural Networks. The objective of studying this whole area is

to advance the knowledge in order to understand the biological layer of the cortical

neural activities and computations in the human brain. We start with a brief review

of the basic biological structures of the brain and neurons in chapter 1. We also

highlight their differences and connections with artificial neural networks in machine

learning. We then discuss how information is received and propagated in the brain

167



as neurons communicate through synapses. Next in chapter 2, we use several spiking

models to describe the biological action potential phenomenon from a single neuron

to a network of neurons. This helps us to understand neuron firing rate dynamics

and other biological properties such as Dale’s principle, synaptic plasticity, “f-I”

curve, excitatory-inhibitory balance, and many other computational properties in

the recurrent neuronal networks.

Semi-balanced Network. One of the properties of biological neural networks

is the input cancellation balance of strong excitatory and inhibitory currents, which

results in a moderate total input. Our first contribution in Chapter 3 is to show that

every balanced network architecture admits stimuli that break the balanced state

and these breaks in balance push the network into a “semi-balanced state” charac-

terized by excess inhibition to some neurons, but an absence of excess excitation. In

addition, we prove the semi-balanced state is equivalence to bounding rates and this

is biologically realistic since it describes the general properties of strongly coupled

networks with moderate firing rates in vivo. Finally, we establish a direct relation-

ship between semi-balanced networks and artificial recurrent neural networks with

rectified linear activation used in machine learning.

Homeostatic Plasticity Learns to Compute Prediction Errors. Beyond

the discovery of models to describe neural biological properties and computations

in the recurrent networks, we then focus on understanding the model capabilities

in the recurrent neuronal networks that can actually produce something. One of

the model abilities involves learning. In chapter 4, we designed “prediction errors”

as mismatched stimuli pairs and evaluate whether the inhibitory synaptic plasticity

rules can learn to compute prediction errors in unstructured neural networks. We

also verify the accuracy of the rate model through mean-field theory and show that it

can be not only used to approximate spiking models but can also use to explain the

learning performance. We find that homeostatic plasticity is sufficient to compute

168



prediction errors for trivial time-constant stimuli, but not for more realistic time-

varying stimuli. Despite some failures of our model detection, this work indeed

helps us understand that with plasticity the network structure is crucial for learning

predictive coding tasks.

Learning Fixed Point in Recurrent Neuronal Networks. Previous chapters

have outlined the connections between the rectified activation in artificial neural

networks and the fixed point of firing rate models in biological neural networks. We

then omit the biological details of spiking and start with a recurrent rate network

model in chapter 5. We train the fixed points in our recurrent neuronal networks and

perform several supervised learning tasks through different learning algorithms. In

addition to the traditional gradient descent approach on the recurrent weight matrix,

we propose new learning rules under a natural re-parameterization of the networks

and their approximation to the linear order. We show that the naı̈ve gradient descent

method is computationally expensive and leads to poor learning performance for both

the higher dimensional linear least square problems and the categorical tasks using the

MNIST benchmark. In contrast, our re-parameterized learning rules can overcome

these obstacles and produce more efficient and robust results.

6.2 Future Work

My work so far has brought two perspectives on the realism of recurrent neural

networks. One is to link neuroscience and machine learning by establishing a direct,

one-to-one analogue between artificial and biological neuronal networks. The other

one is to develop new learning rules for training the recurrent neuronal network

responses and perform a wide range of supervised learning tasks.

One future direction is to continue building the connections between artificial and

biological recurrent neural networks by extending the results from a single-layered

recurrent neuronal network to multi-layered and/or deep recurrent neuronal net-

169



works, which is more biologically and realistically linked to cortical circuits. The

neuronal network can learn static functions as well as functions between time series.

Multi-layered recurrent networks in machine learning are expensive to train using

back-propagation through time, but synaptic plasticity does not have this problem. I

will continue the biological connections with plasticity learning and also account for

other efficient machine learning algorithms. Specifically, short-term synaptic plas-

ticity introduces nonlinearities, and together with the nonlinearities introduced by

the activation functions in machine learning, these results could help account for the

long-term dependencies in the recurrent neuronal networks.

Another direction is to continue developing more efficient learning algorithms

in recurrent neuronal networks by including the capabilities of solving more diffi-

cult tasks while still biologically realistic. For example, I would like to extend our

model capacity to unsupervised learning tasks such as clustering and association. In

addition, I would like to discover other machine learning approaches like reinforce-

ment learning through agency and rewards. Furthermore, I would like to connect

our biological recurrent neural network models with operational research and de-

velop decision-making tasks where I can demonstrate the model improvements and

its explainable potential with artificial intelligence in the real business applications.

Beyond the current work direction on learning, the brain-modeling Odyssey will

continue expanding in many possible directions as below:

• Use a bayesian framework to describe the sensory cortex and understand how
the brain interacts with our “real” world through predictive coding.

• Take a causal inference approach to analyze the biological neural activities when
a cause of a change in internal or external condition.

• Use more refined mathematical models such as introducing higher order and/or
partial differential equations, which include space and time components to de-
scribe neural activities.

• Implement stochastic elements for the biological recurrent network. Stochastic
input and output simulations are useful to understand neural computations.

170



Likewise, the stochastic components can also be useful in improving learning
performance such as the stochastic gradient descent method can get rid of stock
in the local landscape.

• Discover other biological properties other than sensory processing such as motor
control and memory.

• Apply higher-order statistical description other than the first moment (i.e.,
mean or expectation) such as using covariance or distribution to draw the
connection between neuron features with other characteristics.

• Develop statistical hypothesis tests and derive estimates for inference and draw
conclusions about neuron activities.

• . . .

There are so many directions and methodologies that can be useful, and I will con-

tinue to describe the new problems as the solution has been created through a pro-

posed project. Just like in architecture, the development of the arch allowed for the

challenge of building cathedrals. So the developments in my previous work lay the

groundwork for the problems of my future brain-modeling discovery.

171



APPENDIX A

LEARNING FIXED POINTS IN RNNS (CORRESPONDING TO CHAPTER 5)

A.1 Derivation of the Direct Gradient Descent Rule

Here, we derive Eq. (5.6) for direct gradient descent on W . To derive Eq. (5.6),

it is sufficient to show that

∇WL(ri(W )) =
(︂
ri [∇riL]

T [︁I −GiW
]︁−1

Gi
)︂T

.

We know ∇WL(ri(W )) is a matrix with elements

∂L

∂Wjk

= [∇riL(r
i,yi)] · ∂ri

∂Wjk

,

To derive ∂ri

∂Wjk
, we first derive the change of firing rate, ∆r⃗i to linear order in ∆Wjk,

∆ri = f(z)− f(z0) by Taylor expansion

= f(z0) +
f ′(z0)

1!
(z− z0)− f(z0) +O(z− z0)

2

= Gi(z− z0) +O(z− z0)
2.

172



Where W = W0 +∆W , and z0 = W0r⃗+ x⃗i is the total input from the previous step.

To linear order in ∆ri, we have

∆ri = Gi(z− z0)

= Gi
(︁
(Wri + xi)− (W0r

i
0 + xi

0)
)︁

= Gi
(︁
(W0 +∆W )ri −W0r

i
0

)︁
= Gi(W0r

i +∆Wri −W0r
i
0)

= Gi(W0∆ri +∆Wri)

∆ri −GiW0∆ri = Gi∆Wri

[I −GiW0]∆ri = Gi∆Wri.

As a result, we have that

∂ri

∂Wjk

= [I −GiW ]−1Gi1jkr
i

which is interpreted as a column vector.

We first need to derive the derivative of r⃗i with respect to a single entry in W .

To achieve this, We can first derive the change of firing rate in the linear order after

an update to W ,

∆ri = f(z)− f(z0) by Taylor expansion

= f(z0) +
f ′(z0)

1!
(z− z0)− f(z0) +O(z− z0)

2

= Gi(z− z0) +O(z− z0)
2.

Where z0 is the total input from the previous step. To linear order in ∆ri, we

have

173



∆ri = Gi(z− z0)

= Gi
(︁
(Wri + xi)− (W0r

i
0 + xi

0)
)︁

for constant input, xi = xi
0

= Gi
(︁
(W0 +∆W )ri −W0r

i
0

)︁
= Gi(W0r

i +∆Wri −W0r
i
0)

= Gi(W0∆ri +∆Wri)

∆ri −GiW0∆ri = Gi∆Wri

[I −GiW0]∆ri = Gi∆Wri.

As a result, we have that

∂ri

∂Wjk

= [I −GiW ]−1Gi1jkr
i

where ∂ri

∂Wjk
is interpreted as a column vector. Eq. (5.6) then follows from the following

Lemma.

Lemma 1 [I −GiW ]−1Gi1jkr
i = rik [[I −GiW ]−1Gi](:,j)

Proof: We first calculate 111r
i, 112r

i, and 121r
i:

111r
i =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 . . . 0

0 · . . . ·

· · . . . ·

· · . . . ·

0 0 . . . 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ri1

·

·

·

riM

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ri1

0

·

·

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= ri1I(:, 1)

174



112r
i =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 . . . 0

0 · . . . ·

· · . . . ·

· · . . . ·

0 0 . . . 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ri1

·

·

·

riM

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ri2

0

·

·

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= ri2I(:, 1)

121r
i =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 . . . 0

1 · . . . ·

· · . . . ·

· · . . . ·

0 0 . . . 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ri1

·

·

·

riM

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

ri1

·

·

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= ri1I(:, 2).

Denote A := [I − GiW ]−1Gi , so A111r
i = ri1A(:,1), A112r

i = ri2A(:,1), and A121r
i =

ri1A(:,2). Notice that they are column vectors. WLOG, A1jkr
i = rikA(:,j)

LHS = ∇wL(r
i(W )) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

dL
dW11

dL
dW12

. . . . . . dL
dW1M

dL
dW21

dL
dW22

. . . . . . dL
dW2M

dL
dWj1

. . . dL
dWjk

. . . dL
dWjM

dL
dWM1

dL
dWM2

. . . . . . dL
dWMM

⎤⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

ri1[∇riL(r
i)] · A(:,1) . . . riM [∇riL(r

i)] · A(:,1)

ri1[∇riL(r
i)] · A(:,2) . . . riM [∇i

rL(r
i)] · A(:,2)

. . . rk[∇riL(r
i)] · A(:,j) . . .

ri1[∇riL(r
i)] · A(:,M) . . . riM [∇i

rL(r
i)] · A(:,M)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

175



RHS =
(︁
ri[∇riL(r

i)]T [I −GiW ]−1Gi
)︁T

=
(︁
ri[∇riL(r

i)]TA
)︁T

=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎣

ri1
∂L(ri)

∂ri1
ri1

∂L(ri)

∂ri2
. . . ri1

∂L(ri)

∂riM

ri2
∂L(ri)

∂ri1
ri2

∂L(ri)

∂ri2
. . . ri2

∂L(ri)

∂riM

. . . . . . . . . . . .

riM
∂L(ri)

∂ri1
riM

∂L(ri)

∂ri2
. . . riM

∂L(ri)

∂riM

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

A11 A12 . . . A1M

A21 A22 . . . A2M

. . . . . . . . . . . .

AM1 AM2 . . . AMM

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎟⎠

T

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

ri1[∇riL(r
i)]TA(:,1) ri1[∇riL(r

i)]TA(:,2) . . . ri1[∇riL(r
i)]TA(:,M)

ri2[∇riL(r
i)]TA(:,1) ri2[∇riL(r

i)]TA(:,2) . . . ri2[∇riL(r
i)]TA(:,M)

. . . . . . . . . . . .

rM [∇riL(r
i)]TA(:,1) rM [∇riL(r

i)]TA(:,2) . . . rM [∇riL(r
i)]TA(:,M)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

T

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

ri1[∇riL(r
i)] · A(:,1) . . . riM [∇riL(r

i)] · A(:,1)

ri1[∇riL(r
i)] · A(:,2) . . . riM [∇riL(r

i)] · A(:,2)

. . . rik[∇riL(r
i)] · A(:,j) . . .

ri1[∇riL(r
i)] · A(:,M) . . . riM [∇riL(r

i)] · A(:,M)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
= LHS.

Hence

∇wL(r
i(W )) =

(︂
ri
[︁
∇riL(r

i)
]︁T [︁

I −GiW
]︁−1

Gi
)︂T

Simplifying this expression gives Eq. (5.6) for ∆W i
1.

176



A.2 Analysis of A Natural Reparameterization Learning Rule

We now consider the updates given by the re-parameterizationA = [[Gi]−1 −W ]
−1
.

The direct re-parameterized update, ∆W i
2 in this case is given by

∆W i
2 = −

[︂(︁
A− ηA(∇riL)(x

i)T
)︁−1 − A−1

]︂
= −

[︃(︂[︁
[Gi]−1 −W

]︁−1 − ηA(∇riL)(r
i)T
[︁
[Gi]−1 −W T

]︁)︂−1

− [Gi]−1 −W

]︃
.

Proof: Since A = [[Gi]−1 −W ]
−1
, we have W = [Gi]−1 − A−1. Let W 0 and A0

represent the previous step update before W and A, then for each learning step

iteration, i−iteration, Gi = [Gi]0 since Gi is i dependent only and regardless of

learning steps, meaning the fixed change of the coordinate.

∆W i = W −W 0

= [Gi]−1 − A−1 −
(︂[︁

[Gi]0
]︁−1 − [A0]−1

)︂
= ([Gi]−1 −

[︁
[Gi]0

]︁−1
)− A−1 + [A0]−1

= −
(︁
A0 +∆A

)︁−1
+ [A0]−1

= −
(︂
A0 − ηA (∇riL)

(︁
xi
)︁T)︂−1

+ [A0]−1

= −
(︂
A0 − ηA (∇riL)

(︁
ri
)︁T

[A0]−T
)︂−1

+ [A0]−1.

To get the expression that has only Gi and W , we can substitute A and A−1 =

[Gi]−1 −W , and since G = GT and G−T = G−1 as G is a diagonal matrix.

∆W i
2 = −

(︂
A− ηA (∇riL)

(︁
ri
)︁T

A−T
)︂−1

+ A−1

= −
(︂[︁

[Gi]−1 −W
]︁−1 − ηA (∇riL)

(︁
ri
)︁T [︁

[Gi]−1 −W T
]︁)︂−1

+
[︁
[Gi]−1 −W

]︁
.

This completes the proof. Note that as Gi
jj → 0, A−1

jj = [Gi
jj]

−1 −Wjj →∞, so this

reparameterizatin is poorly behaved in situations where Gjj = f ′(zj) becomes small

or zero. The final term will blow up.

177



We also show that linearizing this parameterization around ηA = 0 still leads to

updates that blow up when elements of G become small. Following the linearization

from Section 5.3.2, the linearized, re-parameterized update is given by

∆W i
3 = −ηAA−1(∇riL)(x

i)TA−1

= −ηA
[︁
[Gi]−1 −W

]︁
(∇riL)(r

i)T
[︁
[Gi]−1 −W T

]︁ [︁
[Gi]−1 −W

]︁
.

Proof: For a small disk center at a, Taylor expansion of ∆W i
2(ηA) is

∆W i
2(ηA) = ∆W i

2(a) +
∆W i

2
′
(a)

1!
(ηA − a) +

∆W i
2
′′
(a)

2!
(ηA − a)2 + . . .

consider a center at 0 (so a = 0), let V = A + ∆A = A − ηA(∇riL) (A
−1ri)

T
, then

∆W i
2 = A−1 − V −1, we can linearize it around ηA to get a new learning rule,

∆W i
3(ηA) ≈ ∆W i

2(0) +
∆W i

2
′
(0)

1!
(ηA − 0)

=
(︁
A−1 − V −1

)︁⃓⃓⃓⃓⃓
ηA=0

+

⎡⎣dA−1

dηA

⃓⃓⃓⃓
⃓
ηA=0

− (−V −1 dV

dηA
V −1)

⎤⎦ ηA

=
(︁
A−1 −

(︁
A−1 − 0

)︁)︁
+ 0 + V −1 dV

dηA
V −1

⃓⃓⃓⃓
⃓
ηA=0

ηA

= V −1
(︂
− (∇rL)

(︁
A−1ri

)︁T)︂
V −1

⃓⃓⃓⃓
⃓
ηA=0

ηA

= −
(︁
A−1 − 0

)︁
(∇riL)(A

−1ri)T
(︁
A−1 − 0

)︁
ηA

= −A−1(∇riL)
(︁
ri
)︁T

A−TA−1ηA

= −
[︁
[Gi]−1 −W

]︁−1
(∇riL)

(︁
ri
)︁T [︁

[Gi]−1 −W T
]︁ [︁
[Gi]−1 −W

]︁
ηA.

SubstituteA−1
i , we have the final expression. Notice that ∆W i

3 = A−1A−T∆W i
1A

−TA−1.

One can let B = A−1A−T and C = A−TA−1, so B and C are symmetrical matrices.

∆W i
3 = B∆W i

1C.

178



This completes the proof. Note, again, that ∆W i
3 diverges if elements of Gi go to

zero.

A.3 Linearization of the New Reparameterization Rule

Here, we derive the linearized update, ∆W i
3, given in Eq. (5.18). This update

rule is derived by expanding ∆W i
2 in Eq. (5.17) to linear order. Recall that ∆W i

2 was

derived from the re-parameterization A = [Gi −GiWGi].

Proof: Let U = [G−1 −W ]−1, then we can rewrite Eq. (5.17) as

∆W i
2 = −

[︂
U − ηA

[︁
Gi
]︁2
(∇riL) (r

i)T
[︁
I −GiW

]︁T
Gi
]︂−1

+ U−1.

Now, denote everything inside of the inverse bracket as, V , so

V = U − ηA
[︁
Gi
]︁2
(∇riL) (r

i)T
[︁
I −GiW

]︁T
Gi,

then Eq. 5.17 can be further rewritten as

∆W i
2 = U−1 − V −1.

Perform the Taylor expansion of ∆W i
2(ηA) centered at ηa = 0 to first order in ηA

179



similar to the approach in Appendix A.2:

∆W i
3(ηA) ≈ ∆W i

2(0) +
∆W i

2
′
(0)

1!
(ηA − 0)

=
(︁
U−1 − V −1

)︁⃓⃓⃓⃓⃓
ηA=0

+

⎡⎣dU−1

dηA

⃓⃓⃓⃓
⃓
ηA=0

− (−V −1 dV

dηA
V −1)

⎤⎦ ηA

=
(︁
U−1 −

(︁
U−1 − 0

)︁)︁
+ 0 + V −1 dV

dηA
V −1

⃓⃓⃓⃓
⃓
ηA=0

ηA

= V −1
(︂
− (∇rL)

(︁
A−1ri

)︁T)︂
V −1

⃓⃓⃓⃓
⃓
ηA=0

ηA

= −
(︁
U−1 − 0

)︁
(∇riL)(A

−1ri)T
(︁
A−1 − 0

)︁
ηA

= −U−1(∇riL)
(︁
ri
)︁T

A−TA−1ηA

= −
[︁
[Gi]−1 −W

]︁−1 [︁
Gi
]︁2
(∇riL)

(︁
ri
)︁T [︁

I −GiW
]︁T

Gi
[︁
[Gi]−1 −W

]︁
ηA.

Simplify the last line by distributing Gi into U−1, we obtain Eq. 5.18

∆W i
3 = −ηA

[︁
I −WGi

]︁
Gi (∇riL) (r

i)T
[︁
I −GiW

]︁T
[I −GiW ].

This completes the proof.

A.4 Convexity of the Cost Function for the Linear One-dimensional Model.

Here we prove that the cost function, J(w) for the linear model in N = 1 dimen-

sion from Section 5.4.1 is convex over the stability region of w.

Proof: To see J ′′(W ) > 0. When N = 1, X, R, and Y are vectors with dimension

1×m, where m is the sample size, note that Ri = [(I−W )−1X]i =
1

1−w
Xi is a scalar.

Since J(W ) =
m∑︁
i=1

Li(W ), This is equivalent to show for each sample, i= 1, 2, . . . ,m,

180



L
′′
i (Ri(W )) =

d2
[︁
(Ri−Yi)

2
]︁

dW 2 > 0. Calculate the first derivative:

Li
′(Ri(w)) =

dL

dRi

dRi

dw

= 2(Ri − Yi)

[︃
−1

(1− w)2
Xi

]︃
(−1)

= 2(Ri − Yi)
Xi

(1− w)2

=
2

(1− w)2
(Ri − Yi)Xi.

Set the last expression to zero to find a minimum or maximum value. For each sam-

ple i, when firing rate reach to its target, Ri = Yi, we have L
′
i(Ri(W )) = 0. For

concavity, we need to check the second derivative:

L
′′

i (R(w)) = 2

⎡⎣d
(︂

1
(1−w)2

)︂
dw

(Ri − Yi)Xi +
1

(1− w)2
d (Ri − Yi)Xi

dw

⎤⎦
= 2

[︃
−2

(1− w)3
(−1)

(︃
Xi

1− w
− Yi

)︃
Xi +

1

(1− w)2
−1

(1− w)2
Xi(−Xi)

]︃
= 2

[︃
3X2

i

(1− w)4
− 2YiXi

(1− w)3

]︃
= 2

1

(1− w)4
[︁
3X2

i − 2YiXi(1− w)
]︁
.

For convexity, we want L
′′
i (Ri(w)) > 0, then from 3X2

i − 2YiXi(1 − w) > 0, we can

solve for Yi. Since 1 − w > 0, we can arrange terms such that 3
2

Xi

1−w
> Yi. Hence,

as long as the firing rates are not so much away from the targets (this is equivalent

to say “if our data is linear, then convexity is guaranteed”. In Example 5.4.1 linear

1D network setup, we add the noise term Eq. (5.29) to control how much “linear” in

between X and Y, so σyN(0, 1) term needs to be within half times in comparison to

generate Xi; otherwise data would look like a cluster of “cloud”, hence non-linear.

More specifically when Yi <
3
2
Ri for all i, we have a convex loss with respect to w.

181



In our 1D example, W = −1, Xi ∼ 0.1 ∗N(0, 1) and Yi ∼ 1
1−w

Xi +0.01 ∗N(0, 1).

This is equivalent to Yi ≈ 1
2
Xi+

1
10
Xi = 0.6Xi, and this is indeed less than 3

2
Xi

1−(−1)
=

0.75Xi condition, so the convexity in Figure 5.2 is guaranteed.

A.5 Stability Region Boundary

Here, we derive the stability boundary on W from the model in Section 5.4.2.

Given a line segment t ∈ [−1, 1] or a xy-grid with [−1, 1]× [−1, 1], want to find the

stable initial location when performing gradient descent updates.

Proof: Let Z be a N × N random matrix with independent and identically dis-

tributed entries in the limit of N →∞ such that Zij ∼ 1√
N
N(0, 1), then by circular

law, the spectral radius of Z, ρ(Z) = 1. Furthermore, σ2(Z) = 1
N

and σ(Z) = 1√
N
.

One can consider ρ(Z) as the numerator part of the σ(Z).

Since in our underline Ŵ = σw ∗ Z, then ρ(Ŵ ) = σw ∗ 1. Similarly, σ2(Ŵ ) = σ2
w

N

and σ(Ŵ ) = σw√
N
. Notice that for stability, we want ρ(Ŵ ) < 1, so σw ∈ (0, 1).

Now if we do some perturbation W1 from the optimal Ŵ , let W1 = p ∗ Ŵ along

a random direction in the line segment parameter space, we have W = t ∗W1 +W ∗.

The goal is to find the stability part in the segment t. For stability, we want

the eigenvalue of the Jacobian matrix to be all negative, or the spectral radius

ρ(W ) < 1. Assume independence between W1 and W ∗, since W1 ∼ p ∗ σwZ and

W ∗ = ([Gi]−1Y −X)Y +, where X is independently generated from X ∼ σxN(0, 1).

Hence, σ2(W ) = t2σ2(W1) + σ2(W ∗) ≈ t2p2σ2
w

N
+ σ2

w

N
since Ŵ ≈ W ∗ in magnitude.

Therefore, σ(W ) =
σw

√
t2p2+1√
N

. Hence, ρ(W ) = σw

√︁
t2p2 + 1 < 1. Solve for t, we

have t2 < 1−σ2
w

σ2
wp2

, equivalently −
√

1−σ2
w

σwp
< t <

√
1−σ2

w

σwp
. This is the boundary in Exam-

182



ple 5.4.1.

If consider perturb Ŵ in a random orientated plane in Example 5.4.2 , we have

W = x∗W1+y∗W2+W ∗, whereWl = p∗Ŵ for l = 1, 2. To find the stability region in

the xy-plane, we have σ2(W ) = x2σ2(W1)+y2σ2(W2)+σ2(Ŵ ) = x2p2σ2
w

N
+ y2p2σ2

w

N
+ σ2

w

N

and σ(W ) =
σw

√
x2p2+y2p2+1√

N
. Hence, ρ(W ) = σw

√︁
x2p2 + y2p2 + 1 < 1. Solve for the

point (x,y), we have x2 + y2 < 1−σ2
w

σ2
wp2

.

A.6 Optimal Parameters in Linear Networks

Here, we analyze the optimal parameters, W ∗, for linear networks with f(z) = z

and L() = in any number of dimensions, N ≥ 1. The cost function can be written as

J(W ) =
(︁
[I −W ]−1X − Y

)︁T (︁
[I −W ]−1X − Y

)︁
and we wish to find a minimizer, W ∗, of J(W ). One approach to finding an optimal

value is to reparameterize the system using A = [I −W ]−1 so that the cost can be

re-written as

JA(A) = (AX − Y )T (AX − Y ) .

In this case, finding the optimal A is a standard least squares problem.

Proof: In the under-parameterized case (m ≥ N) when XXT is full rank, A∗ =

Y XT [XXT ]−1 is the unique minimizer of J(W ) and therefore

W ∗ = I − [A∗]−1 = I −XXT [Y XT ]−1

is the unique minimizer of J(W ) when m ≥ N , XXT is full rank, and Y XT is

full rank. Note that when N = 1, XXT and Y XT are scalars and W ∗ = 1 −

183



(XXT )/(Y XT ).

In the over-parameterized case (m < N) when XXT is full rank, there are in-

finitely many choices of A for which J(A) = 0. A common minimizer is given by

A∗ = Y X+

where X+ is the Moore-Penrose pseudo-inverse of X. This is the solution to AX = Y

that minimizes the Frobenius norm of A, i.e.,

A∗ = argminA∥A∥ s.t. AX = Y

where ∥·∥ is the Frobenius norm. We could again find a minimizer of J(W ) by taking

W ∗ = I − [A∗]−1. However, this would represent a solution, W , that minimizes the

norm of A = [I −W ]−1. Since stability is promoted by W having a small spectral

radius (all eigenvalues of W must have a real part less than 1 for stability), this is

a poor choice of W ∗. Minimizing the Frobenius norm of A will tend to push the

eigenvalues of A toward zero, which can lead to large eigenvalues of W = I − A−1.

Instead, to find a good optimizer, W ∗, in the under-parameterized case (m ≥ N),

we should find solutions that minimize the norm of W instead of A. In the under-

parameterized case when XXT is full rank, optimal W satisfies J(W ) = 0. In other

words, we wish to solve

W ∗ = argminW∥W∥ s.t. [I −W ]−1X = Y

To solve this problem, we re-write it as a more standard least squares problem

W ∗ = argminW∥W∥ s.t. WY = Y −X.

184



This problem has a solution

W ∗ = [Y −X]Y +

where Y + is the Moore-Penrose pseudo-inverse of Y . This solution is the solution

with minimum Frobenius norm and is, therefore, more likely to have a smaller spectral

and therefore more likely to give stable fixed points. Hence, this is a good optimizer

in the over-parameterized case (N > m).

A.7 Learning Rules for RNNs with Nonlinear Activation Functions.

We first prove Eq. (5.58).

Proof: Given Eq. (5.52) such that L(yi, si) = −
C∑︁
l=1

yi
llog(s

i
l), with yi represents

one sample of the C-classes label output and it is coded as a “one-hot” vector, so

binary entries. Soft-max function in Eq. (5.53) sil =
eZ

i
l

C∑︁
k=1

e
Zl
k

. For each sample, i, let

ri be the firing rate, then ri ∈ RN , hence Z ∈ RC , where zi = Woutr
i is the i−th

readout output from the network.

∆W i
1(p, q) = −ηW

dL

dW

=

C,C∑︂
j,k=1

∂L

∂sij

∂sij
∂zik

∂zik
∂Wpq

.

We start with the element-wise level first. From Appendix A.1 the Lemma 1, we

know
∂zi

∂Wpq

= Wout
∂ri

∂Wpq

= Wout

[︁
[I −W ]−1 1qpr

i
]︁

= riq
[︁
Wout [I −W ]−1]︁

(:,p)

Hence ∂zi

∂Wpq
= riq

[︁
Wout [I −W ]−1]︁

(:,p)
∈ RC and

∂zik
∂Wpq

= riq
[︁
Wout [I −W ]−1]︁

(k,p)
∈ R.

185



Lemma 2
∂sij
∂zik

= sij (δjk − sk) .

Since we know
dlog

(︁
sij
)︁

dsij
=

1

sij
∈ R,

and
∂ log

(︁
sij
)︁

∂zik
=

1

sij

∂sij
∂zik

Rearrange terms, we have

sij
∂log

(︁
sij
)︁

∂zik
=

∂sij
∂zik

.

Therefore
∂sij
∂zik

= sij
∂log

(︁
sij
)︁

∂zik

= sij

∂log

⎛⎝ e
zij

C∑︁
l=1

e
zi
l

⎞⎠
∂zik

= sij

⎛⎜⎜⎜⎝dzij
dzik
−

∂log

(︃
C∑︁
l=1

ez
i
l

)︃
∂zik

⎞⎟⎟⎟⎠
= sij

(︄
δjk −

1∑︁C
l=1 e

zil

∂
∑︁C

l=1 e
zil

∂zik

)︄

= sij

(︄
δjk −

ez
i
k∑︁C

l=1 e
zil

)︄

= sij
(︁
δjk − sik

)︁
∈ R

where δjk = 1 whenever j = k; zero otherwise.

186



Now, putting it all together we have

∆W i
1(p, q) = −ηW

1

m

C,C∑︂
j,k=1

∂Li

∂sij

∂sij
∂zik

∂zik
∂Wpq

= −ηW
m

C,C∑︂
j,k=1

1

sij
sij
(︁
δjk − sik

)︁
riq
[︁
Wout [I −W ]−1]︁

(k,p)

= −ηW
m

C,C∑︂
j,k=1

riq
(︁
δjk − sik

)︁ [︁
Wout [I −W ]−1]︁

(k,p)

In the matrix level, following the same proof as in Appendix A.1, if we let B =

[Wout].,S[Is,s −WS,S], then we have

LHS = ∇WL(ri(W ),yi) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

dL
dW11

dL
dW12

. . . . . . dL
dW1S

dL
dW21

dL
dW22

. . . . . . dL
dW2S

dL
dWj1

. . . dL
dWpq

. . . dL
dWjS

dL
dWS1

dL
dWS2

. . . . . . dL
dWSS

⎤⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

ri1[∇siL(s
i,yi)] ·B(:,1) . . . riS[∇siL(s

i,yi)] ·B(:,1)

ri1[∇siL(s
i,yi)] ·B(:,2) . . . riS[∇i

sL(s
i,yi)] ·B(:,2)

. . . rk[∇siL(s
i,yi)] ·B(:,j) . . .

ri1[∇siL(s
i,yi)] ·B(:,S) . . . riS[∇i

sL(s
i,yi)] ·B(:,S)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

187



RHS =
(︁
ri[∇siL(s

i,yi)]T [Wout].,S[IS,S −WS,S]
−1
)︁T

=
(︁
ri[∇siL(s

i,yi)]TB
)︁T

=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎣

ri1
∂L(si,yi)

∂si1
ri1

∂L(si,yi)

∂si2
. . . ri1

∂L(si,yi)

∂siS

ri2
∂L(si,yi)

∂si1
ri2

∂L(si,yi)

∂si2
. . . ri2

∂L(si,yi)

∂siS

. . . . . . . . . . . .

riS
∂L(si,yi)

∂si1
riS

∂L(si,yi)

∂si2
. . . riS

∂L(si,yi)

∂siS

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

B11 B12 . . . B1S

B21 B22 . . . B2S

. . . . . . . . . . . .

BS1 BS2 . . . BSS

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎟⎠

T

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

ri1[∇siL(s
i,yi)]TB(:,1) ri1[∇siL(s

i,yi)]TB(:,2) . . . ri1[∇siL(s
i,yi)]TB(:,S)

ri2[∇siL(s
i,yi)]TB(:,1) ri2[∇siL(s

i,yi)]TB(:,2) . . . ri2[∇siL(s
i,yi)]TB(:,S)

. . . . . . . . . . . .

rS[∇siL(s
i,yi)]TB(:,1) rS[∇siL(s

i,yi)]TB(:,2) . . . rS[∇siL(s
i,yi)]TB(:,S)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

T

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

ri1[∇siL(s
i,yi)] ·B(:,1) . . . riS[∇siL(s

i,yi)] ·B(:,1)

ri1[∇siL(s
i,yi)] ·B(:,2) . . . riM [∇siL(s

i,yi)] · A(:,2)

. . . rik[∇siL(s
i,yi)] ·B(:,j) . . .

ri1[∇siL(s
i,yi)] ·B(:,S) . . . riS[∇siL(s

i,yi)] ·B(:,S)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
= LHS.

Hence,

∆W i
1 =

⎧⎪⎪⎨⎪⎪⎩
−ηW

m

[︂
riS (s

i − yi)
T
[Wout].,S [IS,S −WS,S]

−1
]︂T

on S

0 on Sc

We next prove Eq. (5.59), taking a similar approach as before.

188



Proof: since
∂zi

∂Apq

=
dWoutr

i

dApq

= Wout
dAxi

dApq

= Wout1pq

(︁
xi
)︁T

from Lemma 1, we have ∂zi

∂Apq
= xi

q[Wout](:,p).

∆Ai(p, q) = −ηA
m

C,C∑︂
j,k=1

∂Li

∂sij

∂sij
∂zik

∂zik
∂Apq

= −ηA
m

C,C∑︂
j,k=1

xi
q

(︁
δjk − sik

)︁
[Wout](k,p) ,

Then it follows the same way as we derive in Appdix A.1 and Eq. (5.58) above,

in the matrix form, we have ∆A = −ηA
m

[︂
(xi

S) (s
i − yi)

T
[Wout].,S

]︂T
. Note that in

the support set, the activation is linear, so it implies that xi = A−1ri. Hence, we

can write it in terms of ri. Then ∆A = −ηA
m

[︂
(A−1) riS (s

i − yi)
T
[Wout].,S

]︂T
. This

completes the proof.

189



BIBLIOGRAPHY

1. H. Adesnik and M. Scanziani. Lateral competition for cortical space by layer-
specific horizontal circuits. Nature, 464(7292):1155–1160, 2010.

2. Y. Ahmadian and K. D. Miller. What is the dynamical regime of cerebral cortex?
Neuron, 109(21):3373–3391, 2021.

3. A. E. Akil, R. Rosenbaum, and K. Josić. Balanced networks under spike-time
dependent plasticity. PLoS Computational Biology, 17(5):e1008958, 2021.

4. L. B. Almeida. A learning rule for asynchronous perceptrons with feedback in a
combinatorial environment. In Artificial neural networks: concept learning, pages
102–111. Proceedings of IEEE, 1990.

5. S.-I. Amari. Natural gradient works efficiently in learning. Neural computation,
10(2):251–276, 1998.

6. S.-I. Amari and S. C. Douglas. Why natural gradient? In Proceedings of the
1998 IEEE International Conference on Acoustics, Speech and Signal Processing,
ICASSP’98 (Cat. No. 98CH36181), volume 2, pages 1213–1216. IEEE, 1998.

7. D. J. Amit and N. Brunel. Model of global spontaneous activity and local struc-
tured activity during delay periods in the cerebral cortex. Cerebral cortex (New
York, NY: 1991), 7(3):237–252, 1997.

8. A. Attinger, B. Wang, and G. B. Keller. Visuomotor coupling shapes the func-
tional development of mouse visual cortex. Cell, 169(7):1291–1302, 2017.

9. C. Baker, C. Ebsch, I. Lampl, and R. Rosenbaum. Correlated states in balanced
neuronal networks. Physical Review E, 99(5):052414, 2019.

10. C. Baker, V. Zhu, and R. Rosenbaum. Nonlinear stimulus representations in neu-
ral circuits with approximate excitatory-inhibitory balance. PLoS computational
biology, 16(9):e1008192, 2020.

11. J. Barral and A. D Reyes. Synaptic scaling rule preserves excitatory–inhibitory
balance and salient neuronal network dynamics. Nature neuroscience, 19(12):
1690–1696, 2016.

190



12. A. M. Bastos, W. M. Usrey, R. A. Adams, G. R. Mangun, P. Fries, and K. J.
Friston. Canonical microcircuits for predictive coding. Neuron, 76(4):695–711,
2012.

13. A. Beck. Introduction to nonlinear optimization: Theory, algorithms, and appli-
cations with MATLAB. SIAM, 2014.

14. R. Bogacz. A tutorial on the free-energy framework for modelling perception and
learning. Journal of mathematical psychology, 76:198–211, 2017.

15. L. J. Borg-Graham, C. Monier, and Y. Fregnac. Visual input evokes transient and
strong shunting inhibition in visual cortical neurons. Nature, 393(6683):369–373,
1998.

16. R. Brette and W. Gerstner. Adaptive exponential integrate-and-fire model as
an effective description of neuronal activity. Journal of neurophysiology, 94(5):
3637–3642, 2005.

17. N. Brunel. Dynamics of sparsely connected networks of excitatory and inhibitory
spiking neurons. Journal of computational neuroscience, 8:183–208, 2000.

18. N. Brunel and V. Hakim. Fast global oscillations in networks of integrate-and-fire
neurons with low firing rates. Neural computation, 11(7):1621–1671, 1999.

19. M. Capogna, P. E. Castillo, and A. Maffei. The ins and outs of inhibitory synaptic
plasticity: Neuron types, molecular mechanisms and functional roles. European
Journal of Neuroscience, 54(8):6882–6901, 2021.

20. P. E. Castillo, C. Q. Chiu, and R. C. Carroll. Long-term plasticity at inhibitory
synapses. Current opinion in neurobiology, 21(2):328–338, 2011.

21. C. Chow, B. Gutkin, D. Hansel, C. Meunier, and J. Dalibard. Methods and
Models in Neurophysics: Lecture Notes of the Les Houches Summer School 2003.
Elsevier, 2004.

22. A. Clark. Surfing uncertainty: Prediction, action, and the embodied mind. Oxford
University Press, 2015.

23. C. Curto and K. Morrison. Pattern completion in symmetric threshold-linear
networks. Neural computation, 28(12):2825–2852, 2016.

24. C. Curto, J. Geneson, and K. Morrison. Fixed points of competitive threshold-
linear networks. Neural computation, 31(1):94–155, 2019.

25. D. Dahmen, S. Grün, M. Diesmann, and M. Helias. Second type of criticality in
the brain uncovers rich multiple-neuron dynamics. Proceedings of the National
Academy of Sciences, 116(26):13051–13060, 2019.

26. R. Darshan, C. Van Vreeswijk, and D. Hansel. Strength of correlations in strongly
recurrent neuronal networks. Physical Review X, 8(3):031072, 2018.

191



27. P. Dayan and L. F. Abbott. Theoretical neuroscience: computational and math-
ematical modeling of neural systems. MIT press, 2005.

28. A. L. Dorrn, K. Yuan, A. J. Barker, C. E. Schreiner, and R. C. Froemke. Devel-
opmental sensory experience balances cortical excitation and inhibition. Nature,
465(7300):932–936, 2010.

29. C. Ebsch and R. Rosenbaum. Imbalanced amplification: A mechanism of am-
plification and suppression from local imbalance of excitation and inhibition in
cortical circuits. PLoS computational biology, 14(3):e1006048, 2018.

30. D. Ferster and K. D. Miller. Neural mechanisms of orientation selectivity in the
visual cortex. Annual review of neuroscience, 23(1):441–471, 2000.

31. K. Friston. The free-energy principle: a unified brain theory? Nature reviews
neuroscience, 11(2):127–138, 2010.

32. W. Gerstner, W. M. Kistler, R. Naud, and L. Paninski. Neuronal dynamics:
From single neurons to networks and models of cognition. Cambridge University
Press, 2014.

33. V. L. Girko. Circular law. Theory of Probability & Its Applications, 29(4):694–
706, 1985.

34. I. Goodfellow, Y. Bengio, and A. Courville. Deep learning. MIT press, 2016.

35. R. Hahnloser and H. S. Seung. Permitted and forbidden sets in symmetric
threshold-linear networks. Advances in neural information processing systems,
13, 2000.

36. B. Haider, A. Duque, A. R. Hasenstaub, and D. A. McCormick. Neocortical
network activity in vivo is generated through a dynamic balance of excitation
and inhibition. Journal of Neuroscience, 26(17):4535–4545, 2006.

37. B. Haider, M. Häusser, and M. Carandini. Inhibition dominates sensory responses
in the awake cortex. Nature, 493(7430):97–100, 2013.

38. D. O. Hebb. The organization of behavior: A neuropsychological theory. Psy-
chology Press, 2005.

39. M. Helias, T. Tetzlaff, and M. Diesmann. The correlation structure of local neu-
ronal networks intrinsically results from recurrent dynamics. PLoS computational
biology, 10(1):e1003428, 2014.

40. G. Hennequin, E. J. Agnes, and T. P. Vogels. Inhibitory plasticity: balance,
control, and codependence. Annual review of neuroscience, 40:557–579, 2017.

41. L. Hertäg and C. Clopath. Prediction-error neurons in circuits with multiple
neuron types: Formation, refinement, and functional implications. Proceedings
of the National Academy of Sciences, 119(13):e2115699119, 2022.

192



42. L. Hertäg and H. Sprekeler. Learning prediction error neurons in a canonical
interneuron circuit. Elife, 9:e57541, 2020.

43. J. Homann, S. A. Koay, K. S. Chen, D. W. Tank, and M. J. Berry. Novel stimuli
evoke excess activity in the mouse primary visual cortex. Proceedings of the
National Academy of Sciences, 119(5):e2108882119, 2022.

44. R. Jolivet, F. Schürmann, T. K. Berger, R. Naud, W. Gerstner, and A. Roth.
The quantitative single-neuron modeling competition. Biological cybernetics, 99:
417–426, 2008.

45. R. Jordan and G. B. Keller. Opposing influence of top-down and bottom-up
input on excitatory layer 2/3 neurons in mouse primary visual cortex. Neuron,
108(6):1194–1206, 2020.

46. G. B. Keller and T. D. Mrsic-Flogel. Predictive processing: a canonical cortical
computation. Neuron, 100(2):424–435, 2018.

47. G. B. Keller, T. Bonhoeffer, and M. Hübener. Sensorimotor mismatch signals in
primary visual cortex of the behaving mouse. Neuron, 74(5):809–815, 2012.

48. C. M. Kim and C. C. Chow. Learning recurrent dynamics in spiking networks.
Elife, 7:e37124, 2018.

49. D. Kincaid, D. R. Kincaid, and E. W. Cheney. Numerical analysis: mathematics
of scientific computing, volume 2. American Mathematical Soc., 2009.

50. G. Lajoie, K. K. Lin, and E. Shea-Brown. Chaos and reliability in balanced
spiking networks with temporal drive. Physical Review E, 87(5):052901, 2013.

51. G. Lajoie, K. K. Lin, J.-P. Thivierge, and E. Shea-Brown. Encoding in balanced
networks: Revisiting spike patterns and chaos in stimulus-driven systems. PLoS
computational biology, 12(12):e1005258, 2016.

52. I. D. Landau, R. Egger, V. J. Dercksen, M. Oberlaender, and H. Sompolinsky.
The impact of structural heterogeneity on excitation-inhibition balance in cortical
networks. Neuron, 92(5):1106–1121, 2016.

53. M. Leinweber, D. R. Ward, J. M. Sobczak, A. Attinger, and G. B. Keller. A
sensorimotor circuit in mouse cortex for visual flow predictions. Neuron, 95(6):
1420–1432, 2017.

54. Q. Liao and T. Poggio. Bridging the gaps between residual learning, recurrent
neural networks and visual cortex. arXiv preprint arXiv:1604.03640, 2016.

55. R. Liao, Y. Xiong, E. Fetaya, L. Zhang, K. Yoon, X. Pitkow, R. Urtasun, and
R. Zemel. Reviving and improving recurrent back-propagation. In International
Conference on Machine Learning, pages 3082–3091. PMLR, 2018.

193



56. S. Lim and M. S. Goldman. Balanced cortical microcircuitry for spatial working
memory based on corrective feedback control. Journal of Neuroscience, 34(20):
6790–6806, 2014.

57. A. Litwin-Kumar and B. Doiron. Slow dynamics and high variability in balanced
cortical networks with clustered connections. Nature neuroscience, 15(11):1498–
1505, 2012.

58. Y. Luz and M. Shamir. Balancing feed-forward excitation and inhibition via heb-
bian inhibitory synaptic plasticity. PLoS computational biology, 8(1):e1002334,
2012.

59. J. Martens. New insights and perspectives on the natural gradient method. The
Journal of Machine Learning Research, 21(1):5776–5851, 2020.

60. G. Mongillo, D. Hansel, and C. Van Vreeswijk. Bistability and spatiotemporal
irregularity in neuronal networks with nonlinear synaptic transmission. Physical
review letters, 108(15):158101, 2012.

61. J. Neter, M. H. Kutner, C. J. Nachtsheim, W. Wasserman, et al. Applied linear
statistical models. Irwin Chicago, 1996.

62. W. Nicola and C. Clopath. Supervised learning in spiking neural networks with
force training. Nature communications, 8(1):2208, 2017.

63. M. Okun and I. Lampl. Instantaneous correlation of excitation and inhibition
during ongoing and sensory-evoked activities. Nature neuroscience, 11(5):535–
537, 2008.

64. Y. Ollivier, C. Tallec, and G. Charpiat. Training recurrent networks online with-
out backtracking. arXiv preprint arXiv:1507.07680, 2015.

65. H. Ozeki, I. M. Finn, E. S. Schaffer, K. D. Miller, and D. Ferster. Inhibitory sta-
bilization of the cortical network underlies visual surround suppression. Neuron,
62(4):578–592, 2009.

66. F. Pineda. Generalization of back propagation to recurrent and higher order
neural networks. In Neural information processing systems, 1987.

67. R. Pyle and R. Rosenbaum. Highly connected neurons spike less frequently in
balanced networks. Physical Review E, 93(4):040302, 2016.

68. R. Pyle and R. Rosenbaum. Spatiotemporal dynamics and reliable computations
in recurrent spiking neural networks. Physical review letters, 118(1):018103, 2017.

69. R. P. Rao and D. H. Ballard. Predictive coding in the visual cortex: a functional
interpretation of some extra-classical receptive-field effects. Nature neuroscience,
2(1):79–87, 1999.

194



70. R. P. Rao and T. J. Sejnowski. 16 predictive coding, cortical feedback, and
spike-timing dependent plasticity. Probabilistic models of the brain, page 297,
2002.

71. A. Renart, J. De La Rocha, P. Bartho, L. Hollender, N. Parga, A. Reyes, and
K. D. Harris. The asynchronous state in cortical circuits. science, 327(5965):
587–590, 2010.

72. R. Rosenbaum and B. Doiron. Balanced networks of spiking neurons with spa-
tially dependent recurrent connections. Physical Review X, 4(2):021039, 2014.

73. R. Rosenbaum, M. A. Smith, A. Kohn, J. E. Rubin, and B. Doiron. The spatial
structure of correlated neuronal variability. Nature neuroscience, 20(1):107–114,
2017.

74. D. B. Rubin, S. D. Van Hooser, and K. D. Miller. The stabilized supralinear
network: a unifying circuit motif underlying multi-input integration in sensory
cortex. Neuron, 85(2):402–417, 2015.

75. S. Saxena and J. P. Cunningham. Towards the neural population doctrine. Cur-
rent opinion in neurobiology, 55:103–111, 2019.

76. A. Schulz, C. Miehl, M. J. Berry II, and J. Gjorgjieva. The generation of cortical
novelty responses through inhibitory plasticity. Elife, 10:e65309, 2021.

77. M. Spivak. Calculus on manifolds: a modern approach to classical theorems of
advanced calculus. CRC press, 2018.

78. S. C. Surace, J.-P. Pfister, W. Gerstner, and J. Brea. On the choice of metric
in gradient-based theories of brain function. PLoS computational biology, 16(4):
e1007640, 2020.

79. D. Sussillo. Neural circuits as computational dynamical systems. Current opinion
in neurobiology, 25:156–163, 2014.

80. D. Sussillo and L. F. Abbott. Generating coherent patterns of activity from
chaotic neural networks. Neuron, 63(4):544–557, 2009.

81. G. Turrigiano. Too many cooks? intrinsic and synaptic homeostatic mechanisms
in cortical circuit refinement. Annual review of neuroscience, 34:89–103, 2011.

82. C. Van Vreeswijk and H. Sompolinsky. Chaos in neuronal networks with balanced
excitatory and inhibitory activity. Science, 274(5293):1724–1726, 1996.

83. C. van Vreeswijk and H. Sompolinsky. Chaotic balanced state in a model of
cortical circuits. Neural computation, 10(6):1321–1371, 1998.

84. T. P. Vogels and L. Abbott. Gating multiple signals through detailed balance
of excitation and inhibition in spiking networks. Nature neuroscience, 12(4):
483–491, 2009.

195



85. T. P. Vogels, H. Sprekeler, F. Zenke, C. Clopath, and W. Gerstner. Inhibitory
plasticity balances excitation and inhibition in sensory pathways and memory
networks. Science, 334(6062):1569–1573, 2011.

86. T. P. Vogels, R. C. Froemke, N. Doyon, M. Gilson, J. S. Haas, R. Liu, A. Maffei,
P. Miller, C. Wierenga, M. A. Woodin, et al. Inhibitory synaptic plasticity: spike
timing-dependence and putative network function. Frontiers in neural circuits,
7:119, 2013.

87. H. Von Helmholtz. Handbuch der physiologischen Optik, volume 9. Voss, 1867.

88. C. Wacongne, J.-P. Changeux, and S. Dehaene. A neuronal model of predictive
coding accounting for the mismatch negativity. Journal of Neuroscience, 32(11):
3665–3678, 2012.

89. S. Walczak. Artificial neural networks. In Advanced methodologies and technolo-
gies in artificial intelligence, computer simulation, and human-computer interac-
tion, pages 40–53. IGI global, 2019.

90. J. C. Whittington and R. Bogacz. Theories of error back-propagation in the
brain. Trends in cognitive sciences, 23(3):235–250, 2019.

91. B. Widrow and M. E. Hoff. Adaptive switching circuits. Technical report, Stan-
ford Univ Ca Stanford Electronics Labs, 1960.

92. R. J. Williams and J. Peng. An efficient gradient-based algorithm for on-line
training of recurrent network trajectories. Neural computation, 2(4):490–501,
1990.

93. K. Wimmer, A. Compte, A. Roxin, D. Peixoto, A. Renart, and J. De La Rocha.
Sensory integration dynamics in a hierarchical network explains choice probabil-
ities in cortical area mt. Nature communications, 6(1):6177, 2015.

94. X. Xie, R. H. Hahnloser, and H. S. Seung. Selectively grouping neurons in
recurrent networks of lateral inhibition. Neural computation, 14(11):2627–2646,
2002.

95. M. Xue, B. V. Atallah, and M. Scanziani. Equalizing excitation–inhibition ratios
across visual cortical neurons. Nature, 511(7511):596–600, 2014.

96. V. Zhu and R. Rosenbaum. Evaluating the extent to which homeostatic plasticity
learns to compute prediction errors in unstructured neuronal networks. Journal
of Computational Neuroscience, 50(3):357–373, 2022.

This document was prepared & typeset with pdfLATEX, and formatted with
nddiss2ε classfile (v3.2017.2[2017/05/09])

196


	Abstract
	Contents
	Figures
	Tables
	Acknowledgments
	Symbols
	Chapter 1: Introduction
	1.1 A Brief History of A Brain-inspired Machine Learning Architecture
	1.2 Recurrent Neural Networks (RNNs)
	1.2.1 Artificial Recurrent Neural Networks (ARNNs)
	1.2.2 Biological Recurrent Neural Networks (BRNNs)

	1.3 Overview and Contributions

	Chapter 2: Biological Basics and Mathematical Modeling
	2.1 Biological Neurons
	2.2 The Modeling Development of A Single Neuron
	2.2.1 Leaky Integrator Model
	2.2.2 Exponential Integrate-and-Fire (EIF) Model
	2.2.3 Synapses-Driven Model
	2.2.4 Mean-Field Theory
	2.2.5 f-I Curve

	2.3 Modeling of A Network of Neurons
	2.3.1 Recurrent Network
	2.3.2 Connectivity
	2.3.3 Rate Model Approximations
	2.3.4 Balanced Network Theory

	2.4 Modeling Through Synaptic Plasticity and Learning
	2.4.1 Synaptic Plasticity
	2.4.2 Learning


	Chapter 3: Universal Properties of Strongly Connected Networks
	3.1 Introduction
	3.2 Spiking Network Model Descriptions
	3.2.1 Simulations of An Adaptive EIF Model
	3.2.2 Simulations with Inhibitory Plasticity

	3.3 Linear Representations in Balanced Networks
	3.4 Nonlinear Representations in Semi-balanced Networks
	3.4.1 Conditions Break the Classical Balanced State
	3.4.2 Semi-balanced State in BRNNs
	3.4.3 A Direct Correspondence to ANNs
	3.4.4 Homeostatic Plasticity Produces ``Detailed Semi-balanced"

	3.5 Discussion

	Chapter 4: Can Homeostatic Plasticity Learn to Compute Prediction Errors?
	4.1 Introduction
	4.2 Model Descriptions
	4.2.1 An EIF Network Model with Homeostatic Plasticity
	4.2.2 Simulation Parameters
	4.2.2.1 In the Spiking Network Model
	4.2.2.2 In the Mean-Field Rate Network Model


	4.3 Detectable Prediction Errors After Training
	4.3.1 Time-constant Inputs
	4.3.2 An Analysis of Multiple Sub-populations for the Error Detection
	4.3.2.1 Mean-field Rate Model Approximation
	4.3.2.2 Separation of Timescales Approximation

	4.3.3 Distributed and Time-constant Inputs

	4.4 Undetectable Prediction Errors After Training
	4.4.1 Time-varying Inputs
	4.4.2 A Mean-field Explanation for the Absence of Detection
	4.4.2.1 Timescale Assumptions of the Stimuli
	4.4.2.2 Separation of Timescales over Mean Approximation

	4.4.3 Distributed and Time-varying Inputs

	4.5 Generalization
	4.5.1 Networks with External Input to Inhibitory Populations
	4.5.2 Networks with Increasing Mismatch Stimuli
	4.5.3 Networks with More Sub-populations

	4.6 Discussion

	Chapter 5: Learning Fixed Points in Recurrent Neural Network Models
	5.1 Introduction
	5.2 Fixed Point Firing Rate Model and Machine Learning Tasks
	5.2.1 Firing Rate Model Descriptions
	5.2.2 Fixed Point Stability
	5.2.3 Supervised Learning
	5.2.4 Gradient Descent on the Recurrent Weight.

	5.3 Newly Developed Learning Rules
	5.3.1 Nonlinear Reparameterizing of the RNNs
	5.3.2 Linear Approximation of the Reparameterized Rule
	5.3.3 Regularization for Fixed Point Problems

	5.4 Experiments and Results
	5.4.1 Example 1: Linear Least Squares Problem in One-dimension.
	5.4.1.1 Learning Through the Gradient Descent Approach
	5.4.1.2 Learning Under the Reparameterized Update.
	5.4.1.3 Learning Via Linearizing the Reparameterized Rule

	5.4.2 Example 2: Linear Least Squares Problem in Higher-dimensions.
	5.4.2.1 Learning Through the Gradient Descent Approach
	5.4.2.2 Learning Under the Reparameterized Update.
	5.4.2.3 Learning Via Linearizing Reparameterized rule
	5.4.2.4 An Under-parameterized Linear System.

	5.4.3 Example 3: Training Fixed Points on A Categorical Task.
	5.4.3.1 Learning with Linear Activation Function
	5.4.3.2 Learning with ReLu Activation using Support Sets
	5.4.3.3 Learning with a Sigmoidal Activation Function


	5.5 Discussions

	Chapter 6: Summary and Future Directions
	6.1 Summary
	6.2 Future Work

	Appendix A: Learning Fixed Points in RNNs (Corresponding to Chapter 5)
	A.1 Derivation of the Direct Gradient Descent Rule
	A.2 Analysis of A Natural Reparameterization Learning Rule
	A.3 Linearization of the New Reparameterization Rule
	A.4 Convexity of the Cost Function for the Linear One-dimensional Model.
	A.5 Stability Region Boundary
	A.6 Optimal Parameters in Linear Networks
	A.7 Learning Rules for RNNs with Nonlinear Activation Functions.

	Bibliography



